大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (6): 581-597.
• “新型卫星载荷大气遥感及应用” 专辑 • 上一篇 下一篇
杨晓钰1, 王中挺2, 潘光1, 熊伟3, 周伟2, 张连华2, 王兆军1, 姜腾龙1, 刘建军1, 代亚贞2, 马鹏飞2, 厉青2, 赵少华2∗
收稿日期:
2022-07-01
修回日期:
2022-08-20
出版日期:
2022-11-28
发布日期:
2022-12-14
通讯作者:
E-mail: zshyytt@126.com
E-mail:zshyytt@126.com
作者简介:
杨晓钰(1980 - ), 女, 山东济南人, 硕士, 高级工程师, 主要从事环境遥感、可持续发展与环境政策方面的研究。E-mail: ytylpot@126.com
基金资助:
YANG Xiaoyu1, WANG Zhongting2, PAN Guang1, XIONG Wei3, ZHOU Wei2, ZHANG Lianhua2, WANG Zhaojun1, JIANG Tenglong1, LIU Jianjun1, DAI Yazhen2, MA Pengfei2, LI Qing2, ZHAO Shaohua2∗
Received:
2022-07-01
Revised:
2022-08-20
Published:
2022-11-28
Online:
2022-12-14
Contact:
Shaohua -Zhao
E-mail:zshyytt@126.com
摘要: 全球、区域及城市的碳浓度、碳源汇信息是应对气候变化、达成双碳目标、完善国际谈判、支持治理政策制定与执行的重要依据。国际认可的“自上而下” 方法将卫星观测作为基础的通量计算技术, 是验证温室气体排放清单的重要手段。系统介绍了温室气体的卫星探测载荷原理、类别和发展, 以及反演、估算CO2、CH4 和N2O 的浓度和排放通量的方法, 还有探测缺失和误差存在的影响因素等; 分析了对卫星探测温室气体能力提高的迫切需求, 浓度反演和排放量估算精度不足, 以及N2O、氟化物等其他温室气体遥感研究缺乏、地基遥感验证能力薄弱等问题; 最后总结了我国温室气体卫星遥感技术的发展趋势, 主要是面向主被动高时空分辨率卫星的研制应用、高精度多尺度排放量估算(特别针对城市、小区域和点源尺度)、氟化物遥感评估等主题, 以加强对碳排放的量化观测, 并增强对碳循环的理解, 提高感知和应对气候变化的能力。
中图分类号:
杨晓钰, 王中挺, 潘光, 熊伟, 周伟, 张连华, 王兆军, . 卫星遥感温室气体的大气观测技术进展[J]. 大气与环境光学学报, 2022, 17(6): 581-597.
YANG Xiaoyu, WANG Zhongting, PAN Guang, XIONG Wei, ZHOU Wei, . Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 581-597.
[1] | WANG Q, LI Q, Chen L F, et al. Atmospheric Environment Satellite Remote Sensing Technology and Its Application [M]. |
Beijing: Science Press, 2011. | |
王桥, 厉青, 陈良富, 等. 大气环境卫星遥感技术及其应用[M]. 北京: 科学出版社, 2011. | |
[2] | Wang Z T, Ma P F, Zhang L J, et al. Systematics of atmospheric environment monitoring in China via satellite remote sensing |
[J] | Air Quality, Atmosphere & Health, 2021, 14(2): 157-169. |
[3] | Liu L Y, Chen L F, Liu Y, et al. Satellite remote sensing for global stocktaking: Methods, progress and perspectives [J]. |
National Remote Sensing Bulletin, 2022, 26(2): 243-267. | |
刘良云, 陈良富, 刘毅, 等. 全球碳盘点卫星遥感监测方法、进展与挑战[J]. 遥感学报, 2022, 26(2): 243-267. | |
[4] | Gitarskiy M L. The refinement to the 2006 IPCC guidelines for national greenhouse gas inventories [J]. Fundamental and |
Applied Climatology, 2019, 2: 5-13. | |
[5] | Wang L W, Wei Y X. Monitoring gas concentration from carbon emissions by remote sensing [J]. Spectroscopy and Spectral |
Analysis, 2012, 32(6): 1639-1643. | |
王莉雯, 卫亚星. 碳排放气体浓度遥感监测研究[J]. 光谱学与光谱分析, 2012, 32(6): 1639-1643. | |
[6] | Chen L F, Zhang Y, Zou M M, et al. Overview of atmospheric CO2 remote sensing from space [J]. Journal of Remote Sensing, |
20 | 15, 19(1): 1-11. |
陈良富, 张莹, 邹铭敏, 等. 大气CO2 浓度卫星遥感进展[J]. 遥感学报, 2015, 19(1): 1-11. | |
[7] | Jacob D J, Turner A J, Maasakkers J D, et al. Satellite observations of atmospheric methane and their value for quantifying |
methane emissions [J]. Atmospheric Chemistry and Physics, 2016, 16(22): 14371-14396. | |
[8] | Liu Y, Wang J, Che K, et al. Satellite remote sensing of greenhouse gases: Progress and trends [J]. National Remote Sensing |
Bulletin, 2021, 25(1): 53-64. | |
刘毅, 王婧, 车轲, 等. 温室气体的卫星遥感—进展与趋势[J]. 遥感学报, 2021, 25(1): 53-64. | |
[9] | Zhang X Y, Wang F, Wang W H, et al. The development and application of satellite remote sensing for atmospheric compositions |
in China [J]. Atmospheric Research, 2020, 245(3): 105056. | |
[10] | Cai B F, Zhu S L, Yu S M, et al. The interpretation of 2019 refinement to the 2006 IPCC guidelines for national greenhouse |
gas inventory [J]. Environmental Engineering, 2019, 37(8): 1-11. | |
蔡博峰, 朱松丽, 于胜民, 等. 《IPCC 2006 年国家温室气体清单指南2019 修订版》解读[J]. 环境工程, 2019, 37(8): | |
1-11. | |
[11] | Houweling S, Bergamaschi P, Chevallier F, et al. Global inverse modeling of CH4 sources and sinks: An overview of methods |
[J] | Atmospheric Chemistry and Physics, 2017, 17(1): 235-256. |
[12] | Duan F H, Wang X H, Ye H H, et al. Carbon dioxide retrieval method based on statistics and optical path distribution [J]. Acta |
Optica Sinica, 2017, 37(5): 26-32. | |
段锋华, 王先华, 叶函函, 等. 基于统计与光程分布的二氧化碳反演方法[J]. 光子学报, 2017, 37(5): 26-32. | |
[13] | Schuck T J, Brenninkmeijer C A M, Slemr F, et al. Greenhouse gas analysis of air samples collected onboard the CARIBIC |
passenger aircraft [J]. Atmospheric Measurement Techniques, 2009, 2(2): 449-464. | |
[14] | Pison I, Bousquet P, Chevallier F, et al. Multi-species inversion of CH4, CO and H2 emissions from surface measurements [J]. |
Atmospheric Chemistry and Physics, 2009, 9(14): 5281-5297. | |
[15] | He Q, Yu T, Cheng T H, et al. Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatiotemporal |
characteristics analysis [J]. Journal of Geo-information Science, 2012, 14(2): 250-257. | |
何茜, 余涛, 程天海, 等. 大气二氧化碳遥感反演精度检验及时空特征分析[J]. 地球科学学报, 2012, 14(2): 250-257. | |
[16] | Zhang X Y, Meng X Y, Zhou M Q, et al. Review of the validation of atmospheric CO2 from satellite hyper spectral remote |
sensing [J]. Climate Change Research, 2018, 14(6): 602-612. | |
张兴赢, 孟晓阳, 周敏强, 等. 卫星高光谱大气CO2 探测精度验证研究进展[J]. 气候变化研究进展, 2018, 14(6): 602-612. | |
[17] | Yang D X, Liu Y, Cai Z N, et al. An advanced carbon dioxide retrieval algorithm for satellite measurements and its application |
to GOSAT observations [J]. Science Bulletin, 2015, 60(23): 2063-2066. | |
[18] | Cai Z N, Liu Y, Yang D X. Analysis of XCO2 retrieval sensitivity using simulated Chinese Carbon Satellite (TanSat) measurements |
[J] | Science China Earth Sciences, 2014, 57(8): 1919-1928. |
[19] | Deng J B, Liu Y, Yang D X, et al. CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity |
study and preliminary test with GOSAT data [J]. Chinese Science Bulletin, 2014, 59(14): 1499-1507. | |
[20] | Zhao L. Remote Retrieval of Atmospheric CO2 and CH4 Using GOSAT [D]. Changchun: Jilin University, 2017. |
赵靓. 基于GOSAT 卫星的大气CO2 和CH4 遥感反演研究[D]. 长春: 吉林大学, 2017. | |
[21] | Jiang Y, Ye H H, Wang X H, et al. Correction of effect of plant chlorophyll fluorescence based on optical path distribution |
method [J]. Acta Optica Sinica, 2019, 39(4): 50-55. | |
蒋云, 叶函函, 王先华, 等. 基于光程分布方法校正植物叶绿素荧光的影响[J]. 光学学报, 2019, 39(4): 50-55. | |
[22] | Yang D X, Liu Y, Cai Z N. Simulations of aerosol optical properties to top of atmospheric reflected sunlight in the near infrared |
CO2 weak absorption band [J]. Atmospheric and Oceanic Science Letters, 2013, 6(1): 60-64. | |
[23] | Ru F, Lei L P, Hou S S, et al. Evaluation of retrieval errors of greenhouse gas concentrations from GOSAT [J]. Remote Sensing |
Information, 2013, 28(1): 65-70. | |
茹菲, 雷莉萍, 侯姗姗, 等. GOSAT 卫星温室气体浓度反演误差的分析与评价[J]. 遥感信息, 2013, 28(1): 65-70. | |
[24] | Clarmann T , Hopfner M, Kellmann S. Retrieval of temperature, H2O, O3, HNO3, CH4, N2O, ClONO2 and ClO from MIPAS |
reduced resolution nominal mode limb emission measurements [J]. Atmospheric Measurement Techniques, 2009, 2(1): 159- | |
175. | |
[25] | Fan M, Chen L F, Li S S, et al. Impacts of aerosol scattering on the short-wave infrared satellite observations of CO2 [C]. 2016 |
IEEE International Geoscience and Remote Sensing Symposium. Beijing, China. IEEE: 367-369. | |
[26] | Tselioudis G, Lacis A A, Rind D, et al. Potential effects of cloud optical thickness on climate warming [J]. Nature, 1993, |
36 | 6(6456): 670-672. |
[27] | Jiang X H. Research on Cloud Detection and CO2 Inversion Algorithms in Greenhouse Gas Remote Sensing [D]. Beijing: |
University of Chinese Academy of Sciences, 2015. | |
江新华. 温室气体遥感中的云检测与CO2 反演算法研究[D]. 北京: 中国科学院大学, 2015. | |
[28] | Liu Y, Cai Z N, Yang D X, et al. Optimization of the instrument configuration for TanSat CO2 spectrometer [J]. Chinese |
Science Bulletin, 2013, 58(27): 2787-2789. | |
刘毅, 蔡兆男, 杨东旭, 等. 中国二氧化碳科学实验卫星高光谱探测仪光谱指标影响分析及优化方案[J]. 科学通报, | |
20 | 13, 58(27): 2787-2789. |
[29] | Isaksen I, Berntsen T, Dalsøren S, et al. Atmospheric ozone and methane in a changing climate [J]. Atmosphere, 2014, 5(3): |
51 | 8-535. |
[30] | Bekki S, Law K S, Pyle J A. Effect of ozone depletion on atmospheric CH4 and CO concentrations [J]. Nature, 1994, 371(6498): |
59 | 5-597. |
[31] | Saunois M, Jackson R B, Bousquet P, et al. The growing role of methane in anthropogenic climate change [J]. Environmental |
Research Letters, 2016, 11(12): 120207. | |
[32] | Ch´edin A, Serrar S, Scott N A, et al. First global measurement of midtropospheric CO2 from NOAA polar satellites: Tropical |
zone [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D18): 4581. | |
[33] | Crevoisier C, Heilliette S, Ch´edin A, et al. Midtropospheric CO2 concentration retrieval from AIRS observations in the tropics |
[J] | Geophysical Research Letters, 2004, 31(17): L17106. |
[34] | Crevoisier C, Chédin A, Matsueda H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral |
infrared observations [J]. Atmospheric Chemistry and Physics, 2009, 9(14): 4797-4810. | |
[35] | Wang J, Feng L, Palmer P I, et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data [J]. Nature, |
20 | 20, 586(7831): 720-723. |
[36] | Hong X H, Zhang P, Bi Y M, et al. Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with |
TCCON measurements and satellite observations [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-16. | |
[37] | Li Q Q. Inversion Algorithm and Software Implementation for Atmospheric CO2 Satellite Remote Sensing [D]. Hefei: University |
of Science and Technology of China, 2020. | |
李勤勤. 大气CO2 卫星遥感反演算法与软件实现[D]. 合肥: 中国科学技术大学, 2020. | |
[38] | Ye H H,Wang X H,Wu S C, et al. Atmospheric CO2 retrieval method for satellite observations of greenhouse gases monitoring |
instrument on GF-5 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 231-238. | |
叶函函, 王先华, 吴时超, 等. 高分五号卫星GMI 大气CO2 反演方法[J]. 大气与环境光学学报, 2021, 16(3): 231-238. | |
[39] | Wu S C,Wang X H, Ye H H, et al. Atmospheric CO2 cooperative inversion algorithm applied to GF-5 satellite [J]. Acta Optica |
Sinica, 2021, 41(15): 16-22. | |
吴时超, 王先华, 叶函函, 等. 应用于GF-5 卫星的大气CO2 协同反演算法[J]. 光学学报, 2021, 41(15): 16-22. | |
[40] | Yang D X, Liu Y, Feng L, et al. The first global carbon dioxide flux map derived from TanSat measurements [J]. Advances in |
Atmospheric Sciences, 2021, 38(9): 1433-1443. | |
[41] | Liu Y, Wang J, Yao L, et al. The TanSat mission: Preliminary global observations [J]. Science Bulletin, 2018, 63(18): 1200- |
1207. | |
[42] | Wu L H, Hasekamp O, Hu H L, et al. Full-physics carbon dioxide retrievals from the Orbiting Carbon Observatory-2 (OCO-2) |
satellite by only using the 2.06 m band [J]. Atmospheric Measurement Techniques, 2019, 12(11): 6049-6058. | |
[43] | Liao X Y, Sun J L, Lu N, et al. Discussion on atmospheric CO2 retrieval using SCIAMACHY data [J]. Progress in Geophysics, |
20 | 12, 27(3): 837-845. |
廖秀英, 孙九林, 吕宁, 等. 探讨利用SCIAMACHY 数据反演温室气体二氧化碳[J]. 地球物理学进展, 2012, 27(3): | |
83 | 7-845. |
[44] | Song C. Retrieval, Simulation and Regional Fluxes Estimation of Greenhouse Gases [D]. Shanghai: East China Normal University, |
2015. | |
宋慈. 温室气体的遥感反演、输送模拟和通量估计[D]. 上海: 华东师范大学, 2015. | |
[45] | Zou M M, Chen L F, Tao J H, et al. CO2 retrieval and preliminary retrieval results from space-based observations in shortwave |
infrared band [J]. Journal of Remote Sensing, 2015, 19(1): 46-53. | |
邹铭敏, 陈良富, 陶金花, 等. 短波红外CO2 反演过程约束研究及初步反演结果[J]. 遥感学报, 2015, 19(1): 46-53. | |
[46] | 张兴赢, 白文广, 张鹏, 等. 卫星遥感中国对流层中高层大气甲烷的时空分布特征[J]. 科学通报, 2011, 56(33): |
28 | 04-2811. |
[47] | 白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010, 55(30): |
29 | 53-2960. |
[48] | Zhang Y, Chen L F, Tao J H, et al. Retrieval of methane profiles from spaceborne hyperspectral infrared observations [J]. |
Journal of Remote Sensing, 2012, 16(2): 232-247. | |
张莹, 陈良富, 陶金花, 等. 利用卫星红外高光谱资料反演大气甲烷浓度垂直廓线[J]. 遥感学报, 2012, 16(2): 232-247. | |
[49] | Bu T T, Wang X H, Ye H H, et al. Errors analysis and correction in atmospheric methane retrieval based on greenhouse gases |
observing satellite data [J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 186-190. | |
卜婷婷, 王先华, 叶函函, 等. 基于GOSAT 卫星数据的大气甲烷反演误差分析及校正[J]. 光谱学与光谱分析, 2016, | |
36 | (1): 186-190. |
[50] | Tian H Q, Xu R T, Canadell J G, et al. A comprehensive quantification of global nitrous oxide sources and sinks [J]. Nature, |
20 | 20, 586(7828): 248-256. |
[51] | Thompson R L , Lassaletta L, Patra P K , et al. Acceleration of global N2O emissions seen from two decades of atmospheric |
inversion [J]. Nature Climate Change, 2019, 9(12): 993-998. | |
[52] | Ma P F, Chen L F, Li Q, et al. Simulation of atmospheric nitrous oxide profiles retrieval from AIRS observations [J]. Spectroscopy |
and Spectral Analysis, 2015, 35(6): 1690-1694. | |
马鹏飞, 陈良富, 厉青, 等. 红外高光谱资料AIRS 反演晴空条件下大气氧化亚氮廓线[J]. 光谱学与光谱分析, 2015, | |
35 | (6): 1690-1694. |
[53] | Wang H, Li X, Xu J, et al. Assessment of retrieved N2O, NO2, and HF profiles from the atmospheric infrared ultraspectral |
sounder based on simulated spectra [J]. Sensors, 2018, 18(7): 2209. | |
[54] | Xiong X Z, Maddy E S, Barnet C, et al. Retrieval of nitrous oxide from Atmospheric Infrared Sounder: Characterization and |
validation [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(14): 9107-9122. | |
[55] | Steffen J, Bernath P F, Boone C D. Trends in halogen-containing molecules measured by the Atmospheric Chemistry Experiment |
(ACE) | satellite [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 238: 106619. |
[56] | Zeng X Y, Wang W, Liu C, et al. Detection of atmosphere CCl2F2 spatio-temporal variations by ground-based high resolution |
Fourier transform infrared spectroscopy [J]. Acta Physica Sinica, 2021, 70(20): 9-17. | |
曾祥昱, 王薇, 刘诚, 等. 利用地基高分辨率傅里叶变换红外光谱技术探测大气氟氯烃气体CCl2F2 的时空变化特征 | |
[J] | 物理学报, 2021, 70(20): 9-17. |
[57] | Le Qu´er´e C, Andrew R M, Canadell J G, et al. Global carbon budget 2016 [J]. Earth System Science Data, 2016, 8: 605-649. |
[58] | Lamarque J F, Shindell D T, Josse B, et al. The atmospheric chemistry and climate model intercomparison project (ACCMIP): |
Overview and description of models, simulations and climate diagnostics [J]. Geoscientific Model Development, 2013, 6(1): | |
17 | 9-206. |
[59] | Patra, P K, Houweling, S, Krol, M, et al. TransCom model simulations of CH4 and related species: Linking transport, surface |
flux and chemical loss with CH4 variability in the troposphere and lower stratosphere [J]. Atmospheric Chemistry and Physics, | |
20 | 11, 11(24): 12813-12837. |
[60] | Tian H Q, Yang J, Lu C Q, et al. The global N2O model intercomparison project [J]. Bulletin of the American Meteorological |
Society, 2018, 99(6): 1231-1251. | |
[61] | Nguyen H, Liu J J, Kulawik S, et al. Multi-instrument fused bias-corrected XCO2 and other select fields aggregated as level |
4 | daily files V1 (MultiInstrumentFusedXCO2) at GES DISC [DS]. Goddard Earth Sciences Data and Information Services |
Center (GES DISC). 2022. | |
[62] | Alkhaled A A A A. Remote Sensing of CO2: Geostatistical Tools for Assessing Spatial Variability, Quantifying Representation |
Errors, and Gap-Filling [D]. Michigan: University of Michigan, 2009. | |
[63] | Zeng Z C, Lei L P, Hou S S, et al. A regional gap-filling method based on spatiotemporal variogram model of CO2 columns |
[J] | IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3594-3603. |
[64] | HeW, van der Velde I R , Andrews A E , et al. CTDAS-Lagrange v1.0: A high-resolution data assimilation system for regional |
carbon dioxide observations [J]. Geoscientific Model Development, 2018, 11(8): 3515-3536. | |
[65] | Jiang F, Wang H, Chen J M, et al. Regional CO2 fluxes from 2010 to 2015 inferred from GOSAT XCO2 retrievals using a new |
version of the global carbon assimilation system [J]. Atmospheric Chemistry and Physics, 2021, 21(3): 1963-1985. | |
[66] | Zeng Z C, Lei L P, Hou S S, et al. A regional gap-filling method based on spatiotemporal variogram model of CO2 columns |
[J] | IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3594-3603. |
[67] | Tian X, Xie Z, Liu Y, et al. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and |
3- | D atmospheric CO2 concentrations from observations [J]. Atmospheric Chemistry and Physics, 2014, 14(23): 13281-13293. |
[68] | Engelen R J, Serrar S, Chevallier F. Four-dimensional data assimilation of atmospheric CO2 using AIRS observations [J]. |
Journal of Geophysical Research: Atmospheres, 2009, 114: D03303. | |
[69] | Zheng T, Nassar R, Baxter M. Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem |
simulations [J]. Environmental Research Letters, 2019, 14(8): 085001. | |
[70] | Zheng B, Chevallier F, Ciais P, et al. Observing carbon dioxide emissions over China′s cities and industrial areas with the |
Orbiting Carbon Observatory-2 [J]. Atmospheric Chemistry and Physics, 2020, 20(14): 8501-8510. | |
[71] | Kiel M, Eldering A, Roten D D, et al. Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: A |
first look at the Los Angeles megacity [J]. Remote Sensing of Environment, 2021, 258: 112314. | |
[72] | Xi X, Natraj V, Shia R L, et al. Simulated retrievals for the remote sensing of CO2, CH4, CO, and H2O from geostationary |
orbit [J]. Atmospheric Measurement Techniques, 2015, 8(11): 4817-4830. | |
[73] | Polonsky I N, O′Brien D M, Kumer J B, et al. Performance of a geostationary mission, geoCARB, to measure CO2, CH4 and |
CO column-averaged concentrations [J]. Atmospheric Measurement Techniques, 2014, 7(4): 959-981. | |
[74] | Meijer Y J, Ingmann P, L¨oscher A, et al. CarbonSat: ESA′s Earth Explorer 8 Candidate Mission [Z]. 2012. https://www.researchgate. |
net/publication/265802091. | |
[75] | Buchwitz M, Reuter M, Bovensmann H, et al. Carbon Monitoring Satellite (CarbonSat): Assessment of atmospheric CO2 and |
CH4 retrieval errors by error parameterization [J]. Atmospheric Measurement Techniques, 2013, 6(12): 3477-3500. | |
[76] | Reuter M, Buchwitz M, Schneising O, et al. Towards monitoring localized CO2 emissions from space: Co-located regional |
CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites [J]. Atmospheric Chemistry and Physics, 2019, 19(14): | |
93 | 71-9383. |
[77] | Zheng B, Ciais P, Chevallier F, et al. Increasing forest fire emissions despite the decline in global burned area [J]. Science |
Advances, 2021, 7(39): eabh2646. | |
[78] | Pandey S, Gautam R, Houweling S, et al. Satellite observations reveal extreme methane leakage from a natural gas well |
blowout [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26376-26381. | |
[79] | Varon D J, McKeever J, Jervis D, et al. Satellite discovery of anomalously large methane point sources from oil/gas production |
[J] | Geophysical Research Letters, 2019, 46(22): 13507-13516. |
[80] | Irakulis-Loitxate I, Guanter L, Liu Y N, et al. Satellite-based survey of extreme methane emissions in the Permian Basin [J]. |
Science Advances, 2021, 7(27): eabf4507. | |
[81] | Dils B, Buchwitz M, Reuter M, et al. The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparative validation of |
GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements | |
from the TCCON [J]. Atmospheric Measurement Techniques, 2014, 7(6): 1723-1744. | |
[82] | Buchwitz M, Reuter M, Schneising O, et al. The greenhouse gas project of ESA′s climate change initiative (GHG-CCI): |
Overview, achievements and future plans [J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial | |
Information Sciences, 2015, XL-7/W3: 165-172. |
[1] | 董鉴韬, 李正强, 谢一凇, 樊程, 洪津, 戴刘新, 顾浩然, 郑杨 . 基于GF-5(02) 卫星DPC数据的2022年春季陆表细粒子气溶胶光学厚度空间分布[J]. 大气与环境光学学报, 2023, 18(4): 323-338. |
[2] | 顾浩然, 李正强, 侯伟真, 裘桢炜, 刘振海, 朱军, 伽丽丽, 罗杰, 洪津, 麻金继 . 紫外多角度偏振探测气溶胶层高的信息量分析初步研究[J]. 大气与环境光学学报, 2023, 18(4): 357-370. |
[3] | 符淼. 利用近邻因子提高二氧化氮遥感反演浓度的精度—基于随机森林算法[J]. 大气与环境光学学报, 2023, 18(3): 258-268. |
[4] | 许健, 饶兰兰, DOICU Adrian, 胡斯勒图∗, 秦凯∗. 基于氧气A 带的高光谱卫星气溶胶层高优化反演[J]. 大气与环境光学学报, 2022, 17(6): 630-639. |
[5] | 杨可意, 韩舸∗, 毛慧琴, 董燕妮, 马昕, 李四维, 龚威. 利用高分五号AHSI 载荷的高分辨率XCH4 异常探测方法研究[J]. 大气与环境光学学报, 2022, 17(6): 670-678. |
[6] | 加亦瑱, 陶明辉∗, 丁思佳, 刘航语, 曾铭裕, 陈良富. 基于卫星遥感的中国地区XCO2 和XCH4 时空分布研究[J]. 大气与环境光学学报, 2022, 17(6): 679-692. |
[7] | 张乐乐, 孙慧兰∗, 杨余辉, 卢宝宝, 刘天弋, 兰小丽, 曹丽君. 伊宁市冬季PM2.5 输送特征及污染源地分析[J]. 大气与环境光学学报, 2022, 17(3): 294-303. |
[8] | 程璐璐, 施文杰, 夏 果∗, 王江涛, 陈巧芹, 金施群. 偏振氧A 带光谱气溶胶垂直剖面反演的信息量分析和灵敏度研究[J]. 大气与环境光学学报, 2022, 17(3): 360-368. |
[9] | 郭映映, 齐贺香, 李素文∗, 牟福生∗. 基于粒子群算法的BP 神经网络在大气 NO2 浓度预测中的应用研究[J]. 大气与环境光学学报, 2022, 17(2): 230-240. |
[10] | 曹子昊, 曾 议∗, 鲁晓峰, 廖 捷, 杨东上, 常 振, 司福祺, 奚 亮, . 成像差分吸收光谱技术的软件研发与数据反演[J]. 大气与环境光学学报, 2022, 17(2): 249-257. |
[11] | 先久坤, 崔世杰, 张运江, 盖鑫磊∗. 亚洲地区黑碳气溶胶外场在线观测研究进展[J]. 大气与环境光学学报, 2022, 17(1): 104-124. |
[12] | 殷振平, 易 帆, ∗, 王 威, 何 芸, 柳付超, 张云鹏, 余长明, . 基于偏振激光雷达对远距离传输沙尘在局地混合过程的观测研究[J]. 大气与环境光学学报, 2021, 16(4): 299-306. |
[13] | 吴孔逸, 侯伟真∗, 史 正, 许 华, 温亚南. 基于卫星多角度观测的气溶胶遥感反演算法研究进展[J]. 大气与环境光学学报, 2021, 16(4): 283-298. |
[14] | 王肖汉, 徐翼洲, 张成歆∗, 吴 跃, 孙中平, 刘 诚, . 基于EMI 观测的珠三角地区对流层NO2 柱浓度时空变化特征分析[J]. 大气与环境光学学报, 2021, 16(3): 197-206. |
[15] | 杨东上, 曾 议, 罗宇涵, 周海金, 司福祺∗, 刘文清. 基于EMI 遥感NO2 技术监测澳洲森林火灾活动[J]. 大气与环境光学学报, 2021, 16(3): 207-214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||