[1] |
International Civil Aviation Organization. Safety report [R]. 2020.
|
[2] |
Liu Y H, Li F Y, Zhang H S, et al. The comparison between sonic-anemometer and three-component propeller anemometer
|
[J] |
Meteorological Hydrological and Marine Instrument, 2003, 20(3): 7-16.
|
|
刘艳华, 李富余, 张宏升, 等. 超声风速仪与三轴风速仪测风的比较研究 [J]. 气象水文海洋仪器, 2003, 20(3): 7-16.
|
[3] |
Li B, Gu Q T, Li R Y, et al. Analyses on disastrous weather monitoring capability of CINRAD and future development [J].
|
|
Meteorological Monthly, 2013, 39(3): 265-280.
|
|
李 柏, 古庆同, 李瑞义, 等. 新一代天气雷达灾害性天气监测能力分析及未来发展 [J]. 气象, 2013, 39(3): 265-280.
|
[4] |
Armijo L. A theory for the determination of wind and precipitation velocities with Doppler radars [J]. Journal of the
|
|
Atmospheric Sciences, 1969, 26(3): 570-573.
|
[5] |
Frehlich R, Cornman L. Estimating spatial velocity statistics with coherent Doppler lidar [J]. Journal of Atmospheric and
|
|
Oceanic Technology, 2002, 19(3): 355-366.
|
[6] |
Smalikho I, Köpp F, Rahm S. Measurement of atmospheric turbulence by 2- μm Doppler lidar [J]. Journal of Atmospheric
|
|
and Oceanic Technology, 2005, 22(11): 1733-1747.
|
[7] |
Frehlich R, Meillier Y, Jensen M L, et al. Measurements of boundary layer profiles in an urban environment [J]. Journal of
|
|
applied meteorology and climatology, 2006, 45(6): 821-837.
|
[8] |
Frehlich R. Doppler lidar measurements of winds and turbulence in the boundary layer [J]. IOP Conference Series: Earth and
|
|
Environmental Science, 2008, 1: 012017.
|
[9] |
Chan P W, Lee Y F. Application of short-range lidar in wind shear alerting [J]. Journal of Atmospheric and Oceanic
|
|
Technology, 2012, 29(2): 207-220.
|
[10] |
Smalikho I N, Banakh V A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in
|
|
the atmospheric boundary layer [J]. Atmospheric Measurement Techniques, 2017, 10(11): 4191-4208.
|
[11] |
Zhai X C, Wu S H, Liu B Y. Doppler lidar investigation of wind turbine wake characteristics and atmospheric turbulence
|
|
under different surface roughness [J]. Optics Express, 2017, 25(12): A515-A529.
|
[12] |
Zhai X C. Atmospheric Turbulence Detection Using Coherent Doppler Lidar and Wind Field Retrieval of ALADIN Airborne
|
|
Demonstrator(A2D) [D]. Qingdao: Ocean University of China, 2019.
|
|
翟晓春. 相干多普勒激光雷达的湍流探测与ALADIN机载样机A2D风场反演方法研究 [D]. 青岛: 中国海洋大学, 2019.
|
[13] |
Kwong K M, Chan P W. LIDAR-based turbulence intensity calculation along glide paths [C]. 14th Coherent Laser Radar
|
|
Conference, 2007.
|
[14] |
Chan P W. LIDAR-based turbulence intensity calculation using glide-path scans of the Doppler Light Detection And Ranging
|
|
(LIDAR) systems at the Hong Kong International Airport and comparison with flight data and a turbulence alerting system [J].
|
|
Meteorologische Zeitschrift, 2010, 19(6): 549-563.
|
[15] |
Hon K K, Chan P W. Application of LIDAR-derived eddy dissipation rate profiles in low-level wind shear and turbulence
|
|
alerts at Hong Kong International Airport [J]. Meteorological Applications, 2014, 21(1): 74-85.
|
[16] |
Kolmogorov A N. Dissipation of energy in the locally isotropic turbulence [J]. Proceedings of the Royal Society of London
|
|
Series A: Mathematical and Physical Sciences, 1991, 434(1890): 15-17.
|
[17] |
Monin A S, Yaglom A M, Lumley J L. Statistical Fluid Mechanics: Mechanics of Turbulence [M]. Array Cambridge, MA:
|
|
MIT Press, 1971.
|
[18] |
Zhang H W, Wu S H, Wang Q C, et al. Airport low-level wind shear lidar observation at Beijing Capital International Airport
|
[J] |
Infrared Physics & Technology, 2019, 96: 113-122.
|
[19] |
Zhang H W, Liu X Y, Wang Q C, et al. Low-level wind shear identification along the glide path at BCIA by the pulsed
|
|
coherent Doppler lidar [J]. Atmosphere, 2021, 12(1): 50.
|
[20] |
Liu X Y, Wu S H, Zhang H W, et al. Low-level wind shear observation based on different physical mechanisms by coherent
|
|
Doppler lidar [J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 491-504.
|
|
刘晓英, 吴松华, 张洪玮, 等. 基于相干多普勒测风激光雷达的不同成因类型的低空风切变观测 [J]. 红外与毫米波学报,
|
20 |
20, 39(4): 491-504.
|