大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (3): 245-257.
曹媛 1,2, 宫明艳 3, 沈非 1,2, 麻金继 1,2*, 杨光 1,2, 林锡文 1,2
收稿日期:
2021-11-15
修回日期:
2022-01-09
出版日期:
2023-05-28
发布日期:
2023-05-28
通讯作者:
E-mail: jinjima@ahnu.edu.cn
E-mail:jinjima@ahnu.edu.cn
作者简介:
曹 媛 (1997- ), 女, 安徽马鞍山人, 硕士研究生, 主要从事大气环境污染方面的研究。E-mail: yuanCao@ahnu.edu.cn
基金资助:
CAO Yuan 1,2, GONG Mingyan 3, SHEN Fei 1,2, MA Jinji 1,2*, YANG Guang 1,2, LIN Xiwen 1,2
Received:
2021-11-15
Revised:
2022-01-09
Published:
2023-05-28
Online:
2023-05-28
Contact:
Jinji MA
E-mail:jinjima@ahnu.edu.cn
摘要: 基于2018 年中国逐日PM2.5数据, 选用随机森林方法构建了高精度PM2.5浓度估算模型, 并在季节和区域尺度 上验证了其时空适用性, 进一步利用特征重要性方法系统阐释了各影响因子对PM2.5浓度变化的重要程度, 最后利用 偏依赖技术探究了不同影响因素的交互作用对PM2.5浓度变化产生的综合影响。结果表明: (1) 相比于多元线性回归 与极端梯度提升树模型, 利用多源数据构建的随机森林模型精度最高, 可准确模拟出PM2.5的浓度, 且在季节和区域 尺度上也有良好的适用性; (2) PM2.5浓度估算模型的特征重要性排序分析发现, 对2018 年全国日均PM2.5浓度影响显 著的因子主要是时空、大气边界层高度等全局性因素, 表明大气污染防治应把握PM2.5传输机制, 强化区域联防联控; (3) 偏依赖交互效应研究发现温度和相对湿度以及年积日、纬度、温度和大气边界层高度的组合对PM2.5浓度变化会产 生显著影响, 说明提升空气质量要从多因子协同治理的角度出发。
中图分类号:
曹媛, 宫明艳, 沈非, 麻金继, 杨光, 林锡文, . 中国区域PM2.5浓度估算以及影响因素解析[J]. 大气与环境光学学报, 2023, 18(3): 245-257.
CAO Yuan , GONG Mingyan , SHEN Fei , MA Jinji , YANG Guang , LIN Xiwen , . Estimation of PM2.5 concentration and analysis of influencing factors in China[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 245-257.
[1] | Zhao B, Zheng H T, Wang S X, et al. Change in household fuels dominates the decrease in PM2.5 exposure and premature |
mortality in China in 2005―2015 [J]. Proceedings of the National Academy of Sciences of the United States of America, | |
20 | 18, 115(49): 12401-12406. |
[2] | Lu M, Lin B L, Inoue K, et al. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan |
[J] | Frontiers of Environmental Science & Engineering, 2018, 12(2): 13. |
[3] | Cai W, Li K, Liao H, et al. Weather conditions conducive to Beijing severe haze more frequent under climate change [J]. |
Nature Climate Change, 2017, 7(4): 257-262. | |
[4] | Duan J X, Zhai W X, Cheng C Q, et al. Socio-economic factors influencing the spatial distribution of PM2.5 concentrations in |
China: An exploratory analysis [J]. Environmental Science, 2018, 39(5): 2498-2504. | |
段杰雄, 翟卫欣, 程承旗, 等. 中国PM2.5污染空间分布的社会经济影响因素分析 [J]. 环境科学, 2018, 39(5): 2498-2504. | |
[5] | Yin X M, Zhu B, Xiong Y J, et al. Objective analysis on circulation types and its links to haze days over Beijing during 2007 |
―2016 [J]. China Environmental Science, 2020, 40(1): 123-134. | |
尹晓梅, 朱彬, 熊亚军, 等. 2007―2016年北京天气分型与霾日的关联 [J]. 中国环境科学, 2020, 40(1): 123-134. | |
[6] | Zhao H J, Che H Z, Zhang X Y, et al. Characteristics of visibility and particulate matter (PM2.5) in an urban area of Northeast |
China [J]. Atmospheric Pollution Research, 2013, 4(4): 427-434. | |
[7] | Ma X Y Shi G Y, Guo Y F, et al. Radiative forcing by greenhouse gases and sulfate aerosol [J]. Acta Meteorologica Sinica, |
20 | 05, 63(1): 41-48. |
马晓燕, 石广玉, 郭裕福, 等. 温室气体和硫酸盐气溶胶的辐射强迫作用 [J]. 气象学报, 2005, 63(1): 41-48. | |
[8] | Wang Y S, Zhang J K, Wang L L, et al. Researching significance, status and expectation of haze in Beijing-Tianjin-Hebei |
region [J]. Advances in Earth Science, 2014, 29(3): 388-396. | |
王跃思, 张军科, 王莉莉, 等. 京津冀区域大气霾污染研究意义、现状及展望 [J]. 地球科学进展, 2014, 29(3): 388-396. | |
[9] | Li X, Gao Z Q, Li Y B, et al. Meteorological conditions for severe foggy haze episodes over North China in 2016-2017 |
winter [J]. Atmospheric Environment, 2019, 199: 284-298. | |
[10] | Zhao X L, Zhou W Q, Han L J, et al. Spatiotemporal variation in PM2.5 concentrations and their relationship with |
socioeconomicfactors in China's major cities [J]. Environment International, 2019, 133: 105145. | |
[11] | Aguilera I, Eeftens M, Meier R, et al. Land use regression models for crustal and traffic-related PM2.5 constituents in four |
areas of the SAPALDIA study [J]. Environmental Research, 2015, 140: 377-384. | |
[12] | He X, Lin Z S. Interactive effects of the influencing factors on the changes of PM2.5 concentration based on GAM model [J]. |
Environmental Science, 2017, 38(1): 22-32. | |
贺 祥, 林振山. 基于GAM模型分析影响因素交互作用对PM2.5浓度变化的影响 [J]. 环境科学, 2017, 38(1): 22-32. | |
[13] | Zhang L K, Lu S F, Jiao K L, et al. Pollution characteristics of particulate matter in urban districts of Baotou and their |
relationships with meteorological conditions [J]. Journal of Atmospheric and Environmental Optics, 2017, 12(6): 401-410. | |
张连科, 鲁尚发, 焦坤灵, 等. 包头城区冬春大气颗粒物污染特征及其与气象条件关系 [J]. 大气与环境光学学报, 2017, | |
12 | (6): 401-410. |
[14] | Zheng K L, Huang Y, Yao X Y, et al. Correlation between PM2.5, NO2 and tourism activities, weather factors in Zhangjiajie |
City [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 347-356. | |
郑凯莉, 黄 毅, 姚小云, 胡晓琰. 张家界市PM2.5、NO2与旅游活动及天气因素的相关性分析 [J]. 大气与环境光学学报, | |
20 | 20, 15(5): 347-356. |
[15] | Zhang S P, Han L J, Zhou W Q, et al. Relationships between fine particulate matter (PM2.5) and meteorological factors in |
winter at typical Chinese cities [J]. Acta Ecologica Sinica, 2016, 36(24): 7897-7907. | |
张淑平, 韩立建, 周伟奇, 等. 冬季PM2.5的气象影响因素解析 [J]. 生态学报, 2016, 36(24): 7897-7907. | |
[16] | Jing R H, Ma J J, Wang C. Methods of PM2.5 inversion based on multi-source data [J]. Journal of Atmospheric and |
Environmental Optics, 2015, 10(1): 51-62. | |
景瑞环, 麻金继, 汪 超. 基于多源数据的PM2.5反演方法 [J]. 大气与环境光学学报, 2015, 10(1): 51-62. | |
[17] | Zhang H, Dong X G, Li Q. Principal component regression analysis of influencing factors of PM2.5 concentration [J]. Journal |
of Changchun University of Technology, 2017, 38(2): 105-110. | |
张 红, 董小刚, 李 群. PM2.5浓度影响因素的主成分回归分析 [J]. 长春工业大学学报, 2017, 38(2): 105-110. | |
[18] | Zhou L, Zhou C H, Yang F, et al. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and |
20 | 11 [J]. Acta Geographica Sinica, 2017, 72(11): 2079-2092. |
周 亮, 周成虎, 杨 帆, 等. 2000―2011 年中国PM2.5时空演化特征及驱动因素解析 [J]. 地理学报, 2017, 72(11): 2079- | |
2092. | |
[19] | Wang S J, Liu X P, Yang X, et al. Spatial variations of PM2.5 in Chinese Cities for the joint impacts of human activities and |
natural conditions: A global and local regression perspective [J]. Journal of Cleaner Production, 2018, 203: 143-152. | |
[20] | Tu M, Liu Z, He C, et al. The relationships between urban landscape patterns and fine particulate pollution in China: A |
multiscale investigation using a geographically weighted regression model [J]. Journal of Cleaner Production, 2019, 237: | |
11 | 7744. |
[21] | Peng L S, Sun H, Nie F F. The evolution of temporal and spatial pattern and influencing factors of the air pollution in China |
[J] | Journal of Environmental Economics, 2017, 2(1): 42-56. |
彭丽思, 孙 涵, 聂飞飞. 中国大气污染时空格局演变及影响因素研究 [J]. 环境经济研究, 2017, 2(1): 42-56. | |
[22] | Liu H M, Fang C L, Huang J J, et al. The spatial-temporal characteristics and influencing factors of air pollution in Beijing- |
Tianjin-Hebei urban agglomeration [J]. Acta Geographica Sinica, 2018, 73(1): 177-191. | |
刘海猛, 方创琳, 黄解军, 等. 京津冀城市群大气污染的时空特征与影响因素解析 [J]. 地理学报, 2018, 73(1): 177-191. | |
[23] | Han J, Li Y Z, Chen X C, et al. Analysis of the influencing factors of PM2.5 concentration in the urban areas of China's towns |
based on grey correlation model [J]. Environmental Protection Science, 2018, 44(3): 69-73. | |
韩 婧, 李元征, 陈新闯, 等. 基于灰色关联模型的中国城镇PM2.5浓度影响因素分析 [J]. 环境保护科学, 2018, 44(3): | |
69 | -73. |
[24] | He X, Lin Z S, Liu H Y, et al. Analysis of the driving factors of PM2.5 in Jiangsu Province based on grey correlation model |
[J] | Acta Geographica Sinica, 2016, 71(7): 1119-1129. |
贺 祥, 林振山, 刘会玉, 等. 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析 [J]. 地理学报, 2016, 71(7): 1119- | |
1129. | |
[25] | Nan Y, Zhang Q Q, Zhang B H. Influencing factors of long-term variations on gridded PM2.5 of typical regions in China |
based on GAM model [J]. Environmental Science, 2020, 41(2): 499-509. | |
南 洋, 张倩倩, 张碧辉. 基于GAM模型分析中国典型区域网格化PM2.5长期变化影响因素 [J]. 环境科学, 2020, 41(2): | |
49 | 9-509. |
[26] | Liu Z H, Huang J W, Kong D Y. The spatial-temporal characteristics and influencing factors of PM2.5 in Wuhan metropolitan |
area [J]. Environmental Protection Science, 2019, 45(3): 51-59. | |
刘子豪, 黄建武, 孔德亚. 武汉城市圈PM2.5的时空特征及其影响因素解析 [J]. 环境保护科学, 2019, 45(3): 51-59. | |
[27] | Wei J, Li Z Q, Lyapustin A, et al. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in |
China: Spatiotemporal variations and policy implications [J]. Remote Sensing of Environment, 2021, 252: 112136. | |
[28] | Wei J, Huang W, Li Z Q, et al. Estimating 1-km-resolution PM2.5 concentrations across China using the space-time random |
forest approach [J]. Remote Sensing of Environment, 2019, 231: 111221. | |
[29] | Zheng Y, Zhang Q, Liu Y, et al. Estimating ground-level PM2.5 concentrations over three megalopolises in China using |
satellite-derived aerosol optical depth measurements [J]. Atmospheric Environment, 2016, 124: 232-242. | |
[30] | Breiman L. Random forests [J]. Machine learning, 2001, 45(1): 5-32. |
[31] | Guidotti R, Monreale A, Ruggieri S, et al. A survey of methods for explaining black box models [J]. ACM Computing |
Surveys, 2019, 51(5): 1-42. | |
[32] | Wang C, Liu Q M, Ying N, et al. Air quality evaluation on an urban scale based on MODIS satellite images [J]. Atmospheric |
Research, 2013, 132: 22-34. | |
[33] | Zhao X Y, Wang W J, Wan W Y. Regional inequalities of residents' health level in China: 2003―2013 [J]. Acta Geographica |
Sinica, 2017, 72(4): 685-698. | |
赵雪雁, 王伟军, 万文玉. 中国居民健康水平的区域差异: 2003-2013 [J]. 地理学报, 2017, 72(4): 685-698. | |
[34] | Miao Y C, Liu S H, Guo J P, et al. Unraveling the relationships between boundary layer height and PM2.5 pollution in China |
based on four-year radiosonde measurements [J]. Environmental Pollution, 2018, 243: 1186-1195. | |
[35] | Zhang J, Liu D Y, Qian Y Y, et al. Boundary layer features of the successional fog and haze episode in Jiangsu area [J]. |
Journal of Arid Meteorology, 2018, 36(3): 483-491. | |
张 静, 刘端阳, 钱映月, 等. 一次持续性雾霾天气的边界层结构特征 [J]. 干旱气象, 2018, 36(3): 483-491. | |
[36] | Zhang Y H, Li S Y. Climatological characteristics of planetary boundary layer height over Japan [J]. International Journal of |
Climatology, 2019, 39(10): 4015-4028. | |
[37] | Li W G, Duan F K, Zhao Q, et al. Investigating the effect of sources and meteorological conditions on wintertime haze |
formation in Northeast China: A case study in Harbin [J]. Science of the Total Environment, 2021, 801: 149631. |
[1] | 王莉君, 周玉, 万丽娟, 程亮亮. 基于贝叶斯的大数据模型在大气污染成因分析中的应用[J]. 大气与环境光学学报, 2023, 18(3): 227-234. |
[2] | 符淼. 利用近邻因子提高二氧化氮遥感反演浓度的精度—基于随机森林算法[J]. 大气与环境光学学报, 2023, 18(3): 258-268. |
[3] | 孙二昌, 麻金继, 吴文涵, 杨光, 郭金雨, . Himawari-8气溶胶变分同化对PM2.5污染模拟的改进[J]. 大气与环境光学学报, 2023, 18(1): 59-72. |
[4] | 许健, 饶兰兰, DOICU Adrian, 胡斯勒图∗, 秦凯∗. 基于氧气A 带的高光谱卫星气溶胶层高优化反演[J]. 大气与环境光学学报, 2022, 17(6): 630-639. |
[5] | 陈玉宽, 王 朔, 徐学哲, 赵卫雄, 盖艳波, 方 波, 张为俊, ∗. 安徽省寿县气溶胶消光系数变化特征分析[J]. 大气与环境光学学报, 2022, 17(5): 533-541. |
[6] | 杨明亮∗, 朱宗玖. 基于LUR 模型下PM2.5 浓度的空间分布模拟分析[J]. 大气与环境光学学报, 2022, 17(3): 347-359. |
[7] | 彭立平, 黄 毅∗, 郑凯莉. 旅游活动强度变化下旅游地大气PM2.5浓度响应研究[J]. 大气与环境光学学报, 2021, 16(6): 471-482. |
[8] | 贾宏亮, 罗 俊, 肖东升∗. 基于遥感数据和GWR 模型的成都PM2.5 浓度时空分布特征研究[J]. 大气与环境光学学报, 2021, 16(6): 529-540. |
[9] | 陈 杰, 李正强∗, 常文渊∗, 张 莹, 魏瑗瑗, 谢一凇, 葛邦宇, 张 驰, . 基于改进GSI 系统的气溶胶变分同化对WRF-Chem PM2.5 分析和预报的影响评估[J]. 大气与环境光学学报, 2020, 15(5): 321-333. |
[10] | 施益强, 陈坰烽, 王 坚, 黄宝燕, 吴 君, 陈颖锋, 肖钟湧, ∗. 厦门市MODIS 气溶胶光学厚度与PM2.5 的时空特征及其相关性[J]. 大气与环境光学学报, 2020, 15(5): 334-346. |
[11] | 郑凯莉, 黄 毅∗, 姚小云, 胡晓琰. 张家界市PM2.5、NO2 与旅游活动及天气因素的相关性分析[J]. 大气与环境光学学报, 2020, 15(5): 347-356. |
[12] | 马潇瑶, 肖正辉∗, 何立志, 曹运江. 湘潭市PM2.5 中二次水溶性无机离子及其 气态前体物的污染特征[J]. 大气与环境光学学报, 2020, 15(4): 296-304. |
[13] | 刘东, 周雨迪, 朱小磊, 陈扬, 徐沛拓, 刘崇, 王南朝, 沈雪. 大气海洋高光谱分辨率激光雷达鉴频特性研究[J]. 大气与环境光学学报, 2020, 15(1): 48-54. |
[14] | 李正强1,谢一凇1,洪津2,王中挺3,王舒鹏4,孙晓兵2,乔延利2,顾行发1. 星载对地观测偏振传感器及其大气遥感应用[J]. 大气与环境光学学报, 2019, 14(1): 2-17. |
[15] | 潘楠 卢新卫. 2016年春节期间西安市大气颗粒物中多环芳烃的污染特征[J]. 大气与环境光学学报, 2018, 13(3): 208-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||