大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (4): 479-488.doi: 10.3969/j.issn.1673-6141.2024.04.008

• 环境光学监测技术 • 上一篇    下一篇

主成分分析法在合肥市空气质量评估中的应用

周闯 1,2, 张琦锦 1,2, 郭映映 1,2, 牟福生 1,2*, 李素文 1,2*   

  1. 1 淮北师范大学物理与电子信息学院, 安徽 淮北 235000; 2 污染物敏感材料与环境修复安徽省重点实验室, 安徽 淮北 235000
  • 收稿日期:2022-07-19 修回日期:2022-09-07 出版日期:2024-07-28 发布日期:2024-07-30
  • 通讯作者: E-mail: swli@chnu.edu.cn; moufusheng@163.com E-mail:moufusheng@163.com
  • 作者简介:周闯 (1998- ), 河南信阳人, 硕士研究生, 主要从事污染物监测与分析方面的研究。 E-mail: zc_451673@163.com
  • 基金资助:
    国家自然科学基金 (41875040, 41705012), 安徽省高等学校创新团队项目 (2023AH010043), 安徽省自然科学研究基金项目 (2208085QF215), 安徽省高校自然科学研究项目 (2023AH050338)

Application of principal component analysis in air quality assessment of Hefei City

ZHOU Chuang 1,2, ZHANG Qijin 1,2, GUO Yingying 1,2, MOU Fusheng 1,2*, LI Suwen 1,2*   

  1. 1 School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, China; 2 Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei, 235000, China
  • Received:2022-07-19 Revised:2022-09-07 Online:2024-07-28 Published:2024-07-30
  • Contact: mou fusheng E-mail:moufusheng@163.com

摘要: 基于2019 年1 月1 日至2020 年12 月31 日地面国控站点的重要污染物日均浓度监测数据和气象数据, 利用主 成分分析法对合肥市城市空气质量进行了综合评估。其中污染物数据包括细颗粒物 (PM2.5)、可吸入颗粒物 (PM10)、二 氧化氮 (NO2)、二氧化硫 (SO2)、一氧化碳 (CO) 和臭氧 (O3) 等重要大气污染物的日值数据; 气象数据包括平均气温、平 均风速、日照时数、20-20 时累计降水量、平均本站气压和平均相对湿度。首先通过逐步回归法筛选出与空气质量指数 有显著影响的指标, 再通过主成分分析法对显著指标进行数据降维。根据主成分分析理论, 从5 个显著影响指标中提 取出2 个主成分, 所提取的两个主成分累积方差贡献率达到82.9%。评估合肥市城区空气质量的第一主成分为PM2.5、 CO和PM10组成的综合指标, 表明合肥市空气质量受PM2.5、CO和PM10污染物的浓度变化影响最为显著; 第二主成分 为日照时数和O3组成的综合指标, 表明日照时数和O3浓度的变化是影响空气质量的第二重要因素。主成分综合得分 与空气质量指数具有较好的一致性 (R2 = 0.78), 对比分析发现, 主成分分析法对于优良空气质量及冬季的评估效果最 好。研究结果表明, 运用主成分分析法提取的主成分结合综合得分可对城区空气质量进行有效评估。

关键词: 主成分分析, 逐步回归, 空气质量指数, 空气质量评估, 合肥市

Abstract: Based on the daily average concentration monitoring data of important pollutants and the meteorological data at ground national control stations from January 1, 2019 to December 31, 2020, a comprehensive assessment of urban air quality in Hefei City, China, was conducted using the principal component analysis method. The pollutant data includes daily values of important atmospheric pollutants such as fine particulate matter (PM2.5), inhalable particulate matter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3), and the corresponding daily mean meteorological parameters include temperature, wind speed, sunshine duration, precipitation, atmospheric pressure, and relative humidity. Firstly, the indicators that have a significant impact onthe air quality were selected through stepwise regression, and then these significant indicators were reduced to a lower dimension through the principal component analysis. According to the theory of principal component analysis, two principal components were extracted from five significant impact indicators, and the cumulative variance contribution rate of the two extracted principal components reached 82.9%. The first principal component was characterized by high loadings of PM2.5, CO, and PM10 concentrations, implying the significant impact of these parameters on the air quality of Hefei. The second principal component was characterized by high loadings of O3 concentration and sunshine duration, demonstrating their important role on the air quality of Hefei. Overall, good correlation was observed between the results from principal component analysis and the air quality index with a correlation coefficient of 0.78. In addition, it is found that the proposed method is more suitable to assess the air quality in winter and under good air quality conditions. These findings highlight the good performance of principal component analysis method on the assessment of urban air quality.

Key words: principal component analysis, stepwise regression, air quality index, air quality assessment; Hefei City

中图分类号: