大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (5): 571-579.

• 环境光学监测技术 • 上一篇    

基于NIR-TDLAS的香烟燃烧过程氰化氢测量

马晋 , 段政 , 朱宏历 , 郭古青 , 宫廷 , 孙小聪 , 李传亮 , 邱选兵*   

  1. 太原科技大学应用科学学院物理系, 山西省精密测量与在线检测装备工程研究中心, 山西 太原 030024
  • 收稿日期:2022-11-23 修回日期:2023-01-05 出版日期:2024-09-28 发布日期:2024-10-11
  • 通讯作者: E-mail: qiuxb@tyust.edu.cn E-mail:qiuxb@tyust.edu.cn
  • 作者简介:马 晋 (1997- ), 山西闻喜人, 硕士研究生, 主要从事光学方面的研究。E-mail: majin@stu.tyust.edu.cn
  • 基金资助:
    国家重点研发计划 (2023YFF0718100), 国家自然科学基金 (52076145), 山西省科技创新人才团队专项资助 (202304051001034), 山西省留 学人员科技活动项目 (20230031), 山西省省筹资金资助回国留学人员科研资助项目 (2023-151)

Measurement of hydrogen cyanide during cigarette combustion process based on NIR-TDLAS

MA Jin , DUAN Zheng , ZHU Hongli , GUO Guqing , GONG Ting , SUN Xiaocong , LI Chuanliang , QIU Xuanbing *   

  1. Department of Physics, College of Applied Science, Taiyuan University of Science and Technology, Shanxi Engineering Research Center for Precision Measurement and Online Testing Equipment, Taiyuan 030024, China
  • Received:2022-11-23 Revised:2023-01-05 Online:2024-09-28 Published:2024-10-11

摘要: 氰化氢 (HCN) 是香烟燃烧过程释放的一种重要产物, 严重危害人体健康。然而传统的气相色谱法等方法很 难实现燃烧过程中HCN的实时测量。本工作采用中心波长为1.53 μm的分布式反馈激光器作为光源, 结合激光吸收 光谱 (TDLAS) 技术, 对香烟燃烧过程中HCN气体的释放规律进行研究。实验系统采用Herriott 型多光程池增加激光 的有效光程, 反射次数达35 次, 有效光程达17.5 m; 同时利用嵌入式系统对原始解调的吸收信号进行采集与滤波, 最 终根据测得的光谱信号计算得到HCN浓度; 此外, 还应用波长调制与解调光谱技术提高系统的检测灵敏度与稳定性。 校准实验表明, 在0.001%~0.01%浓度范围内, HCN的决定系数R2为0.9974。利用该系统对0.002%标准HCN气体进 行1000 s 的连续监测, Allan 方差分析表明, 在55 s 的积分时间内, 系统的理论检测极限达到22 × 10-9, 验证了检测系 统的稳定性。为研究不同吸烟条件下香烟HCN的变化规律, 实验模拟了100 ml/min 到400 ml/min 不同的采样流速和 17%、22%、30%、40%等氧气氛围下香烟燃烧释放的HCN浓度。结果表明, 单位时间内香烟燃烧过程释放的HCN浓度 与采样流速和氧气浓度正相关, 而整个燃烧过程中释放的HCN总量与氧气浓度负相关。本工作的开展为进一步研究 香烟燃烧过程中的HCN的生成机理提供了基础, 同时也为在近红外波段实现烟气中HCN以及其他痕量气体的测量提 供了一种有效借鉴。

关键词: 氰化氢, 激光吸收光谱, 香烟燃烧, Allan方差

Abstract: Hydrogen cyanide (HCN) is an important product released during cigarette combustion, which seriously endangers human health. However, traditional methods such as gas chromatography are difficult to achieve real-time measurements during the combustion process. In this work, the evolution of released HCN during cigarette combustion is researched by employing laser absorption spectroscopy (TDLAS) technique, where a distributed feedback laser with a central wavelength of 1.53 μm is selected as the light source. In the experimental system, a Herriott multi-path cell is used to increase the effective optical path of the laser, with 35 reflections and 17.5 m effective optical path, At the same time, the embedded system is used to collect and filter the absorption signal of the original demodulation, and finally the HCN concentration is calculated according to the measured spectral signal. In addition, wavelength modulation and demodulation spectroscopy are applied to improve the detection sensitivity and stability of the system. Calibration experiments show that the determination coefficient R2 of HCN is 0.9974 in the concentration range of 0.001%-0.01%. The system continuously monitors 0.002% standard HCN gas for 1000 s, and Allan variance analysis shows that the theoretical detection limit of the system reaches 22 × 10-9 within 55 s integration time, verifying the stability of the detection system. In order to study the evolution of HCN produced under different smoking conditions, experiments are conducted to simulate the release of HCN from cigarette combustion under different sampling flow rates from 100 ml/min to 400 ml/min and oxygen atmosphere of 17%, 22%, 30% and 40%. The results show that the HCN concentration released during cigarette combustion per unit time is positively correlated with sampling flow rate and oxygen concentration, while the total amount of HCN released during the entire combustion process is negatively correlated with oxygen concentration. This work provides a basis for further research on the generation mechanism of cigarettes are burned to produce HCN. and also provides an effective reference for the measurement of HCN and other trace gases in smoke in the near-infrared band.

Key words: hydrogen cyanide, laser absorption spectrum, cigarette burn, Allan variance

中图分类号: