大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (6): 717-728.doi: 10.3969/j.issn.1673-6141.2024.06.008

• 光学遥感 • 上一篇    

基于场景光谱库的高光谱影像模拟

李浩 1,4,6, 顾行发 1,3,5, 占玉林 2,5*, 杨健 2, 李娟 2, 赵起超 1,4, 田晓敏 1,4, 杨秀峰 1,4, 高敏 2,5   

  1. 1 北华航天工业学院遥感信息工程学院, 河北 廊坊 065000; 2 中国科学院空天信息创新研究院, 北京 100094; 3 广州大学, 广东 广州 510006; 4 河北省航天遥感信息处理与应用协同创新中心, 河北 廊坊 065000; 5 中国科学院大学, 北京 100094; 6 河北省区域地质调查院, 河北 廊坊 065000
  • 收稿日期:2022-11-24 修回日期:2023-01-11 出版日期:2024-11-28 发布日期:2024-12-05
  • 通讯作者: E-mail: zhanyl@aircas.ac.cn E-mail:zhanyl@aircas.ac.cn
  • 作者简介:李浩 (1994- ), 河南商丘人, 硕士研究生, 主要从事遥感影像模拟方面的研究。E-mail: lihao_411403@163.com
  • 基金资助:
    国家重点研发计划项目;河北省全职引进高端人才科研项目;国家重点研发计划项目;国家科技重大专项;国家国防科技工业局高分重大专项;中央引导地方科技发展资金项目;河北省教育厅青年基金;国家民用空间基础设施项目

Hyperspectral image simulation based on scene spectral library

LI Hao 1,4,6, GU Xingfa 1,3,5, ZHAN Yulin 2,5*, YANG Jian 2, LI Juan 2, ZHAO Qichao 1,4, TIAN Xiaomin 1,4, YANG Xiufeng 1,4, GAO Min 2,5   

  1. 1 School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China; 2 Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China; 3 Guangzhou University, Guangzhou 510006, China; 4 Heibei Spacer Remote Sensing Information Processing and Application of Collaborative Innovation Center, Langfang 065000, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China; 6 Hebei Institute of Regional Geological Survey, Langfang 065000, China
  • Received:2022-11-24 Revised:2023-01-11 Online:2024-11-28 Published:2024-12-05
  • Supported by:
    国家重点研发计划项目 (2019YFE0127300), 河北省全职引进高端人才科研项目 (2020HBQZYC002), 国家重点研发计划项目 (2019YFE0126600), 国家科技重大专项 (67-Y50G04-9001-22/23), 国家科技重大专项 (67-Y50G05-9001-22/23), 国家民用空间基础设施项 目 (YG202102H), 中央引导地方科技发展资金项目 (216Z0303G), 河北省教育厅青年基金 (QN2022076)

摘要: 高光谱影像能够获取地物精细的光谱信息, 是地物精细识别、参数高精度反演的数据源。然而, 高光谱传感 器由于其自身的特征, 往往覆盖周期较长, 从而限制了其应用推广。为了提高高光谱影像的时效性, 研究人员开展了 大量高光谱影像模拟的研究, 然而已有的大多数方法是基于标准光谱库, 与实际的场景光谱存在较大差异。本文构 建了一种基于场景光谱库的高光谱影像模拟方法, 并提出一种基于归一化植被指数 (NDVI) 的光谱匹配算法, 提升了 模拟的速度和精度。该方法以山东省德州市西南部为试验区进行实验验证, 以高分一号 (GF-1) WFV多光谱数据为模 板影像对高分五号 (GF-5) AHSI载荷数据进行了模拟, 并且同传统的模拟方法进行了对比分析。分析结果表明: 建立 的新方法模拟结果表现良好, 283 个有效波段的平均R2为0.69, 相较于基于类别匹配的传统模拟方法提升了0.16, 但 各波段的模拟效果存在差异, 其中在第71 波段处模拟效果最佳, R2达到了0.81, 比基于类别匹配的模拟方法增加了 0.18; 在运行效率方面, 该方法模拟时间大大缩短, 模拟速率提高了75%。

关键词: 高光谱影像模拟, 光谱匹配, 场景光谱库, 归一化植被指数

Abstract: Hyperspectral image can obtain fine spectral information of ground objects, and is a data source for fine identification of ground objects and high-precision inversion of parameters. However, due to its own characteristics, hyperspectral sensors often have low resolution and long coverage periods, which limits their application and promotion. In order to improve the timeliness of hyperspectral images, researchers have carried out a lot of research on hyperspectral image simulation. However, most of the existing methods are based on the ideal spectrum library, which is quite different from the actual scene spectra. A hyperspectral image simulation method is constructed based on a scene spectral library, and a spectral matching algorithm is proposed based on normalized difference vegetation index (NDVI), which greatly improves the speed and accuracy of simulation. The method was tested in the southwest of Dezhou City, Shandong Province, China, and the GF-1 WFV multispectral data were used as the template images to simulate the GF-5 AHSI load data, and at last, the simulation results was compared with the traditional simulation methods. The comparison results show that the simulation results of this method are good, with an average R2 of 0.69 for 283 effective bands, which is 0.16 higher than that of the traditional simulation method based on category retrieval. However, the simulation effect of each band is different, among which the best simulation effect is at band 71, where R2 reaches 0.81, which is 0.18 more than the simulation method based on category matching retrieval. In terms of operation efficiency, the simulation time of the new method is greatly shortened and the simulation speed is increased by 75%.

Key words: hyperspectral image simulation, spectral matching, scene spectrum library, normalized difference vegetation index

中图分类号: