大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (1): 82-94.doi: 10.3969/j.issn.1673-6141.2025.01.007

• 环境光学监测技术 • 上一篇    下一篇

基于改进Seq2Seq模型的华东地区PM2.5预测

陈善龙 1, 李毅 2, 牛丹 3, 胡译文 2,4, 臧增亮 2*   

  1. 1 东南大学软件学院, 江苏 苏州 215123; 2 国防科技大学气象海洋学院, 湖南 长沙 410000; 3 东南大学自动化学院, 江苏 南京 211189; 4 南京信息工程大学大气物理学院, 江苏 南京 210044
  • 收稿日期:2022-04-22 修回日期:2022-05-31 出版日期:2025-01-28 发布日期:2025-02-10
  • 通讯作者: E-mail: zzlqxxy@163.com E-mail:1062460692@qq.com
  • 作者简介:陈善龙 (1996- ), 安徽六安人, 硕士研究生, 主要从事深度学习在PM2.5预报方面的研究。E-mail: 1062460692@qq.com
  • 基金资助:
    国家自然科学基金重点项目 (42430612), 湖南重点研发计划项目 (2024AQ2004)

PM2.5 prediction in East China based on improved Seq2Seq model

CHEN Shanlong 1, LI Yi 2, NIU Dan 3, HU Yiwen 2,4, ZANG Zengliang 2*   

  1. 1 School of Software, Southeast University, Suzhou 215123, China; 2 College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410000, China; 3 School of Automation, Southeast University, Nanjing 211189, China; 4 School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2022-04-22 Revised:2022-05-31 Online:2025-01-28 Published:2025-02-10
  • Contact: Shan-Long CHEN E-mail:1062460692@qq.com
  • Supported by:
    Key Program of National Natural Science Foundation of China;Key Program of National Natural Science Foundation of China

摘要: PM2.5数据是一种时间序列数据, 具有较强的时序性与非线性特征。传统的时间序列模型算法有长短期记忆 人工神经网络 (LSTM)、循环神经网络 (RNN)、编码器-解码器神经网络 (Seq2Seq) 等方法。本文提出一种基于Seq2Seq 网络并融合注意力机制的PM2.5预测算法 (Seq2Seq+Attention), 其中Seq2Seq 的cell 单元为LSTM, 能充分提取输入的 有效特征信息, 增强网络的学习能力和预测效果。利用2019 年1 月至2021 年8 月华东地区10 个城市的PM2.5数据进行 了预测试验, 试验对比了LSTM、Seq2Seq 和Seq2Seq+Attention 3 种方法在24 h 内的PM2.5数值预报准确度。研究结果 表明, Seq2Seq+Attention方法在预测效果上优于其他方法, 且24 h 的预测评分也高于其他方法。

关键词: PM2.5预测, Seq2seq, 注意力机制, 深度学习, 时间序列

Abstract: PM2.5 data is a kind of time series data, which has strong time-series and non-linear characteristics. Traditional time series modeling algorithms include long short-term memory artificial neural network (LSTM), recurrent neural network (RNN), encoder-decoder neural network (Seq2Seq) and other methods. In this paper, we propose a PM2.5 prediction algorithm based on Seq2Seq network fused with attention mechanism (Seq2Seq+Attention), where the cell unit of Seq2Seq is LSTM, which can fully extract the effective feature information of the input and enhance the learning ability and prediction effect of the network. Prediction tests were conducted using PM2.5 data from ten cities in East China from January 2019 to August 2021, and the tests compared the accuracy of PM2.5 numerical prediction of LSTM, Seq2Seq and Seq2Seq+Attention methods within 24 hours. The results show that the Seq2Seq+Attention method outperforms the other methods in terms of prediction effectiveness, and its 24-hour prediction score is also higher than the other methods.

Key words: PM2.5 prediction, Seq2seq, attention mechanism, deep learning, time series

中图分类号: