大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (6): 687-702.doi: 10.3969/j.issn.1673-6141.2025.06.001

• 综述 • 上一篇    

基于深度学习方法的空气质量预报研究进展

王雨萌 1, 何跃君 1,2*, 刘剋 1,2   

  1. 1 北华航天工业学院遥感信息工程学院, 河北 廊坊 065000; 2 河北省航天遥感信息处理与应用协同创新中心, 河北 廊坊 065000
  • 收稿日期:2023-05-29 修回日期:2023-08-30 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: E-mail: yuejunhe1981@163.com E-mail:yuejunhe1981@163.com
  • 作者简介:王雨萌 (1999- ), 女, 山东济南人, 硕士研究生, 主要从事环境遥感与人工智能方面的研究。E-mail: aprilwrain@163.com
  • 基金资助:
    省级重点项目 (青海省大气污染现状评估及精细化管理支撑项目)

Progress of research on air quality forecasting based on deep learning methods

WANG Yumeng 1, HE Yuejun 1,2*, LIU Ke 1,2   

  1. 1 School of Remote Sensing and Information Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China; 2 Hebei Collaborative Innovation Center of Space Remote Sensing Information Processing and Application, Langfang 065000, China
  • Received:2023-05-29 Revised:2023-08-30 Online:2025-11-28 Published:2025-11-24
  • Contact: Yuejun He E-mail:yuejunhe1981@163.com

摘要: 大气污染影响着人类健康和环境生态系统, 而空气质量预报是深入开展大气污染防治的重要环节, 对提升重 污染天气防御能力、保障人民健康安全尤为关键。常规的空气质量预报方法通常基于数值模型或统计模型, 然而这些 常规预报方法往往受限于模型的复杂性和数据的不完整性。随着人工智能技术的逐渐成熟, 深度学习为空气质量预 报研究带来了新的思路。为解决空气质量的多变量时空预报问题, 本文从时间依赖建模、时空关联建模、地理信息建 模、数据与物理驱动结合建模四个角度展开, 重点介绍了基于深度学习模型的发展现状、深度学习方法在空气质量预 报中的有效性和潜力, 并列举了服务于深度学习的辅助特征和公共数据集。最后, 对深度学习模型的技术方法优化 及其在空气质量预报方面的应用前景方面进行了总结与展望。

关键词: 空气污染监测, 空气质量预报, 深度学习, 建模

Abstract: Air pollution affects human health and environmental ecosystems, and forecasting air quality is a crucial part of in-depth air pollution prevention and control, which is particularly vital for enhancing the defense capability against heavy polluted weather and protecting puplic health and safety. Conventional air quality forecasting methods are usually based on numerical or statistical models, however, these conventional forecasting methods are often limited by the complexity of models and incompleteness of data. With the gradual maturation of artificial intelligence technology, deep learning has brought new ideas for air quality forecasting research. This paper focuses on the current development status of deep learning-based models and introduces the effectiveness and potential of deep learning methods in air quality forecasting from four perspectives: time-dependent modeling, spatiotemporal correlation modeling, geographic information modeling, and hybrid data-driven and physics-based modeling frameworks. In addition, the auxiliary features and public datasets that support deep learning research are also listed. Finally, a summary outlook on further exploration and optimization of technical methods of deep learning models and their application prospects in air quality forecasting is presented.

Key words: air pollution monitoring, air quality prediction, deep learning, modeling

中图分类号: