大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (6): 766-776.doi: 10.3969/j.issn.1673-6141.2025.06.007

• 环境光学监测技术 • 上一篇    

基于麻雀搜索算法的核极限学习机在PM2.5浓度预测中的应用

叶凡 , 王松 , 王志多 , 周闯 , 李素文 *, 牟福生 *   

  1. 淮北师范大学, 污染物敏感材料与环境修复安徽省重点实验室, 安徽 淮北, 235000
  • 收稿日期:2023-07-20 修回日期:2023-09-05 出版日期:2025-11-28 发布日期:2025-11-24
  • 通讯作者: E-mail: swli@chnu.edu.cn;E-mail: moufusheng@163.com E-mail:swli@chnu.edu.cn
  • 作者简介:叶凡 (2000- ), 女, 安徽桐城人, 硕士研究生, 主要从事污染物监测与分析研究工作。E-mail: 12211060772@chnu.edu.cn
  • 基金资助:
    国家自然科学基金 (41875040, 41705012), 安徽省高等学校创新团队项目 (2023AH010003)

Application of kernel extreme learning machine based on sparrow search algorithm in PM2.5 concentration prediction

YE Fan , WANG Song , WANG Zhiduo , ZHOU Chuang , LI Suwen *, MOU Fusheng *   

  1. Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei 235000, China
  • Received:2023-07-20 Revised:2023-09-05 Online:2025-11-28 Published:2025-11-24
  • Contact: Li SuWen E-mail:swli@chnu.edu.cn

摘要: PM2.5质量浓度是评估环境空气质量的重要指标, 对其变化趋势的准确预测有助于制定更加有效的环保措施。 本文利用麻雀搜索算法 (SSA) 选取核极限学习机 (KELM) 正则化系数和核函数参数的最优值从而构建了SSA-KELM 预测模型, 并利用改进后的SSA-KELM模型进行PM2.5质量浓度预测。研究以合肥地区的空气污染物和气象数据为基 础,利用皮尔逊系数度量其他因子与PM2.5的相关程度, 并通过逐步回归法筛选出与PM2.5质量浓度相关性大的因子输 入到SSA-KELM模型中, 从而最终实现PM2.5日均质量浓度的预测。预测结果的分析显示, SSA-KELM预测模型在准 确性和泛化能力上表现出更优异的性能, 其均方误差降至0.909, 拟合度为0.998, 表明该模型对于PM2.5日均质量浓度 的变化趋势具有较好的预测能力。

关键词: 麻雀搜索算法, 核极限学习机, PM2.5, 预测, 逐步回归

Abstract: PM2.5 concentration is an important indicator for assessing ambient air quality, so accurately predicting the change trend of PM2.5 concentration will help to formulate more effective environmental protection measures. In the paper, the Sparrow Search Algorithm (SSA) is employed to determine the optimal values of regularization function and kernel function parameters of Kernel Extreme Learning Machine (KELM), thereby constructing the SSA-KELM model, and then the improved SSA-KELM model is utilized to predict PM2.5 concentration. Based on the air pollutants and meteorological data of Hefei City, Anhui Province, China, this study firstly uses Pearson coefficient to evaluate the correlation between other factors and PM2.5 concentration, then uses stepwise regression method to screen out the factors with high correlation with PM2.5 concentration to input into the SSA-KELM model, and finially achieves the prediction of the daily average concentration of PM2.5 using the SSA-KELM model. According to the prediction results, the SSA-KELM prediction model exhibits superior performance in accuracy and generalization ability, with a mean square reduced to 0.909 and a fitting degree of 0.998, indicating that the constructed SSA-KELM prediction model has good prediction ability for the change trend of PM2.5 daily average concentration.

Key words: sparrow search algorithm, kernel extreme learning machine, PM2.5, prediction, stepwise regression

中图分类号: