大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (1): 13-22.
郭金家,卢渊,李楠,刘春昊,田野,薛博洋,张超,郑荣儿
出版日期:
2020-01-28
发布日期:
2020-01-19
GUO Jinjia, LU Yuan, LI Nan, LIU Chunhao, TIAN Ye, XUE Boyang, ZHANG Chao, ZHENG Ronger
Published:
2020-01-28
Online:
2020-01-19
摘要: 作为一种分析技术,激光诱导击穿光谱(Laser induced breakdown spectroscopy, LIBS)近年来在各个领域有着快速的发展,
在水下的应用也逐渐受到关注。对LIBS水下研究从实验室模拟到现场试验、从机理研究到技术发展都进行了回顾,并以
中国海洋大学研制的深海LIBS原位探测系统LIBSea为例,给出了LIBS系统在海洋探测中获得的典型结果,最后对未
来5~10年LIBS水下研究方向进行了展望。
中图分类号:
郭金家, 卢渊, 李楠, 刘春昊, 田野, 薛博洋, 张超, 郑荣儿. LIBS水下原位探测技术研究进展[J]. 大气与环境光学学报, 2020, 15(1): 13-22.
[1] | De Giacomo A, Dell'Aglio M, De Pascale O. Single pulse-laser induced breakdownspectroscopy in |
aqueous solution [J]. Applied Physics A, 2004, 79(4-6): 1035-1038. | |
[2] | Tian Y, Xue B, Song J, et al. Comparative investigation of laser-inducedbreakdown |
spectroscopy in bulk water using 532- and 1064-nm lasers [J]. Applied PhysicsExpress, 2017, 10(7): 072401. | |
[3] | Li Ying, Wang Zhennan, Wu Jianglai, et al. Effects of laser wavelength on |
detection of metal elements inwater solution by laser induced breakdown spectroscopy [J]. Spectroscopy and | |
Spectral Analysis, 2012, 32(3):582-585 (in Chinese). | |
李~颖, 王振南, 吴江来,等. 激光波长对水中金属元素激光诱导击穿光谱探测的影响[J]. 光谱学 | |
与光谱分析, 2012, 32(3): 582-585. | |
[4] | Song Jiaojian, Tian Ye, Lu Yuan, et al. Comparative investigation ofunderwater-LIBS using 532 nm |
and 1064 nm lasers [J]. Spectroscopy and Spectral Analysis, 2014, 34(11):3104-3108 (in Chinese). | |
宋矫健, 田~野, 卢~渊,等. 532和1064 nm激光的水下LIBS探测对比研究[J]. 光谱学与光谱分析, 2014, 34(11): 3104-3108. | |
[5] | Kennedy P K, Hammer D X, Rockwell B A. Laser-induced breakdown in aqueous media[J]. Progress in |
Quantum Electronics, 1997, 21(3): 155-248. | |
[6] | Xue Boyang, Tian Ye, Song Jiaojian, et al. Study on the spatial distribution oflaser plasma emission |
underwater with different laser energies [J]. Spectroscopy and SpectralAnalysis, 2016, 36(4): 1186-1190 (in Chinese). | |
薛博洋, 田~野, 宋矫健,等. 不同能量水下激光诱导等离子体的轴向辐射分布特性研究[J]. 光谱学与光谱分析, 2016, 36(4): 1186-1190. | |
[7] | Thornton B, Ura T. Effects of pressure on the optical emissions observed from |
solids immersed in water using asingle pulse laser [J]. Applied Physics Express, 2011, 4(2): 2702. | |
[8] | Tian Y, Xue B, Song J, et al. Stabilization of laser-induced plasma in bulkwater using large |
focusing angle [J]. Applied Physics Letters, 2016, 109(6): 515-7. | |
[9] | Tian Y, Xue B, Song J, et al. Non-gated laser-induced breakdown spectroscopy inbulk water by |
position-selective detection [J]. Applied Physics Letters, 2015, 107(11): 297-103. | |
[10] | Giacomo A D, Dell'Aglio M, Colao F, et al. Double-pulse LIBS in bulk water andon submerged bronze |
samples [J]. Applied Surface Science, 2005, 247(1): 157-162. | |
[11] | Casavola A, De Giacomo A, Dell'Aglio M, et al. Experimental investigation andmodelling of double |
pulse laser induced plasma spectroscopy under water [J]. Spectrochimica ActaPart B: Atomic Spectroscopy, 2005, 60(7): 975-985. | |
[12] | De Giacomo A, Dell'Aglio M, De Pascale O, et al. From single pulse to doublepulse ns-laser induced |
breakdown spectroscopy under water: elemental analysis of aqueous solutions andsubmerged solid | |
samples [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2007, 62(8): 721-738. | |
[13] | De Giacomo A, Dell'Aglio M, Bruno D, et al. Experimental and theoreticalcomparison of single-pulse |
and double-pulse laser induced breakdown spectroscopy on metallic samples [J]. | |
Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(7): 805-816. | |
[14] | De Giacomo A, De Bonis A, Dell'Aglio M, et al. Laser ablation of graphite inwater in a range of |
pressure from 1 to 146 atm using single and double pulse techniques for the production of carbon | |
nanostructures [J]. The Journal of Physical Chemistry C, 2011, 115(12): 5123-5130. | |
[15] | De Giacomo A, Dell'Aglio M, Santagata A, et al. Cavitation dynamics of laserablation of bulk and |
wire-shaped metals in water during nanoparticles production [J]. PhysicalChemistry Chemical Physics, 2013, 15(9): 3083-3092. | |
[16] | Lazic V, Laserna J J, Jovicevic S. Insights in the laser-induced breakdownspectroscopy signal |
generation underwater using dual pulse excitation—Part I: Vapor bubble, | |
shockwaves and plasma [J].Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 42-49. | |
[17] | Lazic V, Laserna J J, Jovicevic S. Insights in the laser induced breakdownspectroscopy signal generation |
underwater using dual pulse excitation-Part II: Plasma emission intensity as afunction of interpulse | |
delay [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 82: 50-59. | |
[18] | Xue B, Li N, Lu Y, et al. Emission enhancement of underwater collinear dual-pulse laser-induced |
breakdown spectroscopy with the second pulse defocused [J]. Applied PhysicsLetters, 2017, 110(10): 101102. | |
[19] | Tamura A, Sakka T, Fukami K, et al. Dynamics of cavitation bubbles generated bymulti-pulse laser irradiation |
of a solid target in water [J]. Applied Physics A, 2013, 112(1): 209-213. | |
[20] | Guirado S, Fortes F J, Lasema J J. Elemental analysis of materials in anunderwater archeological shipwreck |
using a novel remote laser-induced breakdown spectroscopy system [J]. Talanta,2015, 137: 182-8. | |
[21] | Sakka T, Oguchi H, Masai S, et al. Use of a long-duration ns pulse forefficient emission of spectral |
lines from the laser ablation plume in water [J]. Applied physics letters,2006, 88(6): 061120. | |
[22] | Sakka T, Oguchi H, Masai S, et al. Quasi nondestructive elemental analysis ofsolid surface in |
liquid by long-pulse laser ablation plume spectroscopy [J]. Chemistry Letters,2007, 36(4): 508-509. | |
[23] | Sakka T, Masai S, Fukami K, et al. Spectral profile of atomic emission linesand effects of pulse |
duration on laser ablation in liquid [J]. Spectrochimica Acta Part B: AtomicSpectroscopy, 2009, 64(10): 981-985. | |
[24] | Sakka T, Tamura A, Matsumoto A, et al. Effects of pulse width on nascentlaser-induced bubbles for |
underwater laser-induced breakdown spectroscopy [J]. Spectrochimica Acta PartB: Atomic Spectroscopy, 2014, 97: 94-98. | |
[25] | Tamura A, Matsumoto A, Nakajima T, et al. Effects of temporal laser profile onthe emission spectra |
for underwater laser-induced breakdown spectroscopy: Study by short-intervaldouble pulses with | |
different pulse durations [J]. Journal of Applied Physics, 2015, 117(2): 640. | |
[26] | Michel A P M. Laboratory evaluation of laser-induced breakdown spectroscopy(LIBS) as a new in situ |
chemical sensing technique for the deep ocean [J]. Massachusetts Institute ofTechnology, 2007: 1-5. | |
[27] | Lawrence-Snyder M, Scaffidi J, Angel S M, et al. Laser-induced breakdownspectroscopy of high-pressure |
bulk aqueous solutions [J]. Applied Spectroscopy, 2006, 60(7): 786-790. | |
[28] | Michel A P M, Lawrence-Snyder M, Angel S M, et al. Laser-induced breakdownspectroscopy of bulk aqueous |
solutions at oceanic pressures: evaluation of key measurement parameters [J].Applied Optics, 2007, 46(13): 2507-2515. | |
[29] | Lawrence-Snyder M, Scaffidi J, Angel S M, et al. Sequential-pulse laser-inducedbreakdown spectroscopy |
of high-pressure bulk aqueous solutions [J]. Applied Spectroscopy, 2007, 61(2):171-176. | |
[30] | Michel A P M, Chave A D. Double pulse laser-induced breakdown spectroscopy of |
bulk aqueous solutions at oceanicpressures: interrelationship of gate delay, pulse energies, interpulse delay, | |
and pressure [J].Applied Optics, 2008, 47(31): G131-G143. | |
[31] | Lawrence-Snyder M, Scaffidi J P, Pearman W F, et al. Issues in deep oceancollinear double-pulse laser |
induced breakdown spectroscopy: Dependence of emission intensity and inter-pulse delay on solution | |
pressure [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 99: 172-178. | |
[32] | Thornton B, Ura T. Effects of pressure on the optical emissions observed fromsolids immersed in water using a |
single pulse laser [J]. Applied Physics Express, 2011, 4(2): 022702. | |
[33] | Thornton B, Takahashi T, Ura T, et al. Cavity formation and material ablationfor single-pulse |
laser-ablated solids immersed in water at high pressure [J]. Applied PhysicsExpress, 2012, 5(10): 102402. | |
[34] | Thornton B, Sakka T, Takahashi T, et al. Spectroscopic measurements of solidsimmersed in water at high |
pressure using a long-duration nanosecond laser pulse [J]. Applied PhysicsExpress, 2013, 6(8): 082401. | |
[35] | Takahashi T, Thonton B, Ura T. Investigation of double-pulse laser-inducedbreakdown spectroscopy for analysis |
of the composition of solids submerged at high pressures[C]. 2012 Oceans. IEEE,2012: 1-5. | |
[36] | Hou H, Tian Y, Li Y, et al. Study of pressure effects on laser induced plasmain bulk seawater [J]. |
Journal of Analytical Atomic Spectrometry, 2014, 29(1): 169-175. | |
[37] | Hou H, Li Y, Tian Y, et al. Plasma condensation effect induced by ambientpressure in laser induced breakdown |
spectroscopy [J]. Applied Physics Express, 2014, 7: 032402. | |
[38] | Li N, Guo J, Zhu L, et al. Effects of ambient temperature on laser-inducedplasma in |
bulk water [J]. Applied Spectroscopy, 2019, 73(11): 1277-1283. | |
[39] | Li N, Guo J, Zhang C, et al. Salinity effects on elemental analysis in bulkwater by laser-induced |
breakdown spectroscopy [J]. Applied Optics, 2019, 58(14): 3886-3891. | |
[40] | Guirado S, Fortes F J, Lazic V, et al. Chemical analysis of archeologicalmaterials in submarine |
environments using laser-induced breakdown spectroscopy. On-site trials in theMediterranean Sea [J]. | |
Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 74: 137-143. | |
[41] | Guirado S, Fortes F J, Laserna J J. Elemental analysis of materials in anunderwater archeological shipwreck |
using a novel remote laser-induced breakdown spectroscopy system [J]. Talanta,2015, 137: 182-188. | |
[42] | Thornton B, Sakka T, Takahashi T, et al. Laser-induced breakdown spectroscopyfor in situ chemical |
analysis at sea[C]. Underwater Technology Symposium (UT), 2013 IEEE International. IEEE, 2013: 1-7. | |
[43] | Thornton B, Takahashi T, Sato T, et al. Development of a deep-sea laser-inducedbreakdown spectrometer |
for in situ multi-element chemical analysis [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2015, 95: 20-36. | |
[44] | Guo J, Lu Y, Cheng K, et al. Development of a compact underwater laser-inducedbreakdown spectroscopy |
(LIBS) system and preliminary results in sea trials [J]. Applied Optics, 2017,56(29): 8196-8200. | |
[45] | Morel A. Optical Aspects of Oceanography [M]. London: Academic Press, 1974, 1-24. |
[46] | Russo R E, Bol'shakov A A, Mao Xianglei, et al. Laser ablation molecularisotopic spectrometry [J]. Spectrochimica Acta Part B, 2011, 66: 99–104. |
[1] | 郭 航, 邵 慧∗, 陈 杰, 何子辛, 曹 铮, 汪慧民, 颜 普. 基于高光谱激光雷达的滞尘叶片光谱特征分析[J]. 大气与环境光学学报, 2022, 17(4): 420-428. |
[2] | 傅院霞, 王莉, 徐丽, 周彧. 三种感冒药片微量元素的LIBS 检测[J]. 大气与环境光学学报, 2020, 15(4): 305-313. |
[3] | 周卫东 刘燕杰 黄基松. 工作参数对激光诱导土壤等离子体光谱特性的影响[J]. 大气与环境光学学报, 2016, 11(5): 361-366. |
[4] | 朱余 魏桢 张劲松. 傅里叶变换红外吸收光谱的温度修正方法研究[J]. 大气与环境光学学报, 2016, 11(3): 191-196. |
[5] | 尹旭坤 董磊 马维光 张雷 尹王保 贾锁堂. 石英增强光声光谱技术的研究进展[J]. 大气与环境光学学报, 2015, 10(3): 197-204. |
[6] | 翟崇治 刘芮伶 许丽萍 金岭 余家燕 李礼 刘敏. 利用SOF-FTIR测量重庆晏家工业区挥发性有机物排放[J]. 大气与环境光学学报, 2015, 10(2): 158-164. |
[7] | 金岭 徐亮 高闽光 童晶晶 程巳阳 李相贤. 利用SOF-FTIR技术监测化工厂区VOCs排放[J]. 大气与环境光学学报, 2013, 8(6): 416-421. |
[8] | 董磊 武红鹏 张翔 马维光 张雷 尹王保 贾锁堂. 石英增强光声光谱在氢气纯度分析中的应用[J]. 大气与环境光学学报, 2012, (6): 421-426. |
[9] | 李志新 付小芳 谭巍 马维光 董磊 张雷 尹王保 贾锁堂. 基于腔反射光控制的腔衰荡光谱测量实验研究[J]. 大气与环境光学学报, 2012, (6): 458-462. |
[10] | 徐晋 谢品华 司福祺 李昂 窦科 刘宇 秦敏 王曼华 章勇 石鹏 刘文清. 奥运期间北京对流层NO2柱浓度地基多轴差分吸收光谱仪(MAX-DOAS)观测与OMI的对比[J]. 大气与环境光学学报, 2009, 4(5): 347-355. |
[11] | 刘文清 刘建国 谢品华 陆亦怀 高闽光 张玉钧. 区域大气复合污染立体监测技术系统与应用[J]. 大气与环境光学学报, 2009, 4(4): 243-255. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||