大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (1): 23-39.
张亭禄,陈树果,薛程
出版日期:
2020-01-28
发布日期:
2020-01-19
ZHANG Tinglu, CHEN Shuguo, XUE Cheng
Published:
2020-01-28
Online:
2020-01-19
摘要: 海洋水体光学性质测量是海洋光学理论发展的基础,水体光学性质测量技术的提高,也大大带动了其它海
洋光学技术及其应用的发展。回顾历史,光电技术和光谱技术是水体光学测量技术的主要推动力,海洋光
辐射传输理论的发展及水色遥感是水体光学测量技术的主要牵引力。论文重点对水体光学性质中基础量
的测量原理、方法及主要产品做了系统的介绍,其中包括光谱辐亮度和光谱辐照度的测量方法、水体光谱
吸收的测量方法以及光谱散射性的测量方法等。最后,给出了水体光学性质测量技术未来的发展方向,
为从事水体光学性质仪器开发、相关海洋光技术开发和用户等提供参考。
中图分类号:
张亭禄, 陈树果, 薛程. 海洋水体光学性质测量技术研究进展[J]. 大气与环境光学学报, 2020, 15(1): 23-39.
[1] | Pettersson H. Scattering and extinction of light in seawater [J]. Goteborgs K. |
Vetenskapsakad. Vitterh. Samh. Handl. (5), Ser. B, 4(4), Medd. G"{oteborg H"{ogskolos Oceanogr. | |
Inst. 1934, 9: 1-16. | |
[2] | Pettersson H. Transparency of Sea-Water [J]. Nature, 1936, 137(3454): 68-68. |
[3] | Pettersson, H. Measurements of the angular distribution of submarine light [J]. |
Perm. Int. Cons. Explor. Mer Rapp. P.-V Reun., 1938, 108(2): 7-12. | |
[4] | Jerlov N. The evolution of the instrumental technique in underwater optics [J]. |
Progress in Oceanography, 1963, 3: 149-154. | |
[5] | Jerlov N. Optical Oceanography [M]. Amsterdam: Elsevier Oceanography Series, 5, |
Elsevier, 1968. | |
[6] | Petzold T J. Volume scattering functions for selected ocean waters [R]. SIO |
Ref. 72-78, | |
Scripps Inst. Oceanogr., La Jolla, 1972: 179. | |
[7] | Kullenberg G. Observed and computed scattering functions [M]. Chap. 2. In: |
Optical Aspects of Oceanography. | |
Jerlov and Nielsen, eds., New York: Academic Press, 1974: 25-49. | |
[8] | Bartz R J , Zaneveld R V, Pak H , et al. A transmissometer for profiling and |
moored observations in water [J]. Ocean Optics V, Proceedings of SPIE, 1978, 160: 102-108. | |
[9] | Smith R C, Tyler J E. Transmission of solar radiation into natural waters [M], Photochemistry and |
Photobiology Reviews, Kendrick Smith, ed., New York: Plenum Press, 1976. | |
[10] | Moore C, Barnard A H, Fietzek P, et al. Optical tools for ocean monitoring and research [J]. Ocean Science, 2008, 5(4): 661-684. |
[11] | Dickey T D. New technologies and their roles in advancing recent biogeochemical studies [J]. Oceanography, 2001, 14(4): 108-120. |
[12] | Dickey T D. Studies of coastal ocean dynamics and processes using emerging optical technologies [J]. |
Oceanography, 2004, 17(2): 9-13. | |
[13] | Dickey T D, Lewis M R, Chang G, et al. Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations [J]. Reviews of |
Geophysics, 2006, 44(1). | |
[14] | Kirk J T O. Light and Photosynthesis in Aquatic Ecosystems [M]. Cambridge: Cambridge University Press, second ed., 1994: 509. |
[15] | Mobley C D. Light and Water: Radiative Transfer in Natural Waters [M]. San Diego: Academic Press, 1994. |
[16] | Mueller J, Morel A, Frouin R, et al. Ocean optics protocols for satellite ocean color |
sensor validation [R], Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols, | |
Greenbelt: NASA Goddard Space Flight Center, 2003. | |
[17] | Zibordi G, Voss K J, Johnson B C,et al. IOCCG ocean optics and biogeochemistry protocols for |
satellite ocean colour sensor validation, Volume 3.0: Protocols for satellite | |
ocean colour data validation: in situ optical radiometry [R]. IOCCG Protocol Series (2019). Dartmouth: IOCCG, 2019. | |
[18] | TriOS. Your partner for optical sensors [OL]. https://www.trios.de/en/. |
[19] | Sea-Bird Scientific. Introducing new ebook-Sensors for AUVs and ROVs [OL]. https://www.seabird.com/. |
[20] | Biospherical Instruments Inc. The XRR-Adaptable instruments for optically diverse environments [OL]. http://www.biospherical.com/. |
[21] | Zaneveld J R V, Kitchen J C, Bricaud A, et al. Analysis of in situ spectral absorption meter data [J]. |
Ocean Optics XI, G.D. Gilbert, Ed., SPIE, 1992, 1750: 187-200. | |
[22] | Kishino M, Takahashi M, Okami N, et al. Estimation of the spectral absorption coefficients of |
phytoplankton in the sea [J]. Bulletin of Marine Science, 1985, 37(2): 634-642. | |
[23] | Kiefer D, SooHoo J. Spectral absorption by marine particles of coastal waters of Baja California [J]. |
Limnology and Oceanography, 1982, 29(12):764. | |
[24] | Rottgers R, Schonfeld W, Kipp P, et al. Practical test of a point-source integrating |
cavity absorption meter: the performance of different collector assemblies [J]. Applied Optics, 2005, 44(26): 5549-5560. | |
[25] | Jonasz M, Fournier G. Light Scattering by Particles in Water: Theoretical and Experimental Foundations [M]. Academic Press, 2007. |
[26] | Rottgers R, McKee D, Wozniak S B. Evaluation of scatter corrections for ac-9 absorption |
measurements in coastal waters [J]. Methods in Oceanography, 2013, 7: 21-39. | |
[27] | Mckee D, Piskozub J, Rottgers R, et al. Evaluation and improvement of an iterative scattering |
correction scheme for in situ absorption and attenuation measurements [J]. Journal of Atmospheric | |
and Oceanic Technology, 2013, 30(7): 1527-1541. | |
[28] | Neeley A R, Mannino A. IOCCG ocean optics and biogeochemistry protocols for satellite ocean colour sensor |
validation, Volume 1.0: Inherent optical property measurements and protocols: absorption coefficient [R]. | |
IOCCG Protocol Series (2018). Dartmouth: IOCCG, 2018. | |
[29] | Roesler C S. Theoretical and experimental approaches to improve the accuracy of particulate absorption |
coefficients derived from the quantitative filter technique [J]. Limnology and Oceanography, 1998, 43(7): 1649-1660. | |
[30] | Stramski D, Reynolds R A, Kaczmarek S, et al. Correction of pathlength amplification in the filter-pad |
technique for measurements of particulate absorption coefficient in the visible | |
spectral region [J]. Applied Optics, 2015, 54(22): 6763-6782. | |
[31] | Leathers R A, Downes T V, Davis C O, et al. Analysis of a point-source integrating-cavity |
absorption meter [J]. Applied Optics, 2000, 39(33): 6118-6127. | |
[32] | Kirk J T. Point-source integrating-cavity absorption meter: theoretical principles and numerical modeling [J]. |
Applied Optics, 1997, 36(24): 6123-6128. | |
[33] | Sequoia Scientific, Inc. Optical VSF Sensors Volume Scattering Function, Depolarization and Backscattering |
instruments [OL]. http://www.sequoiasci.com/product/optical-vsf-sensors/. | |
[34] | Maffione R A, Dana D R. Instruments and methods for measuring the backward-scattering coefficient of ocean |
waters [J]. Applied Optics, 1997, 36(24): 6057-6067. | |
[35] | Maffione R A, Honey R C. Instrument for measuring the volume scattering function in the backward direction [J]. |
Proceedings of SPIE-The International Society for Optical Engineering, 1992, 1750: 15-26. | |
[36] | Lee M E, Lewis M R. A New Method for the Measurement of the Optical Volume |
Scattering Function in the Upper Ocean [J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(4): 563-571. | |
[37] | Boss E, Pegau W S. Relationship of Light Scattering at an Angle in the Backward Direction to the Backscattering |
Coefficient [J]. Applied Optics, 2001, 40(30): 5503-5507. | |
[38] | Dana D R, Maffione R A. HydroBeta: A new instrument for measuring the volume scattering function from 10 to 170 |
degrees in situ [J]. OceanOptics XV, extended abstracts, 2000. | |
[39] | Moore C, Twardowski M S, and Zaneveld J R V. The EcoVSF–A sensor for determination of the volume scattering |
function [J]. Paper Presented at Ocean Optics XV Conference, Off. of Nav. Res., Monaco, 2000. | |
[40] | Oishi T. Significant relationship between the backward scattering coefficient of sea water and the scatterance |
at 120$^circ$ [J]. Applied Optics, 1990, 29(31): 4658-4665. | |
[41] | Sullivan J M, Twardowski M S. Angular shape of the oceanic particulate volume scattering function in the |
backward direction [J]. Applied Optics, 2009, 48(35): 6811-6819. | |
[42] | Zhang X, Boss E , Gray D J . Significance of scattering by oceanic particles at angles around 120 degree [J]. |
Optics Express, 2014, 22(25): 31329. | |
[43] | Zhang X, Fournier G R, Gray D J. Interpretation of scattering by oceanic |
particles around 120 degrees | |
and its implication in ocean color studies [J]. Optics Express, 2017, 25(4): A191. | |
[44] | Hobi Instrument Services. Welcome [OL]. https://www.hobiservices.com/. |
[1] | 朱思峰, 朱梦瑶, 伽丽丽, 许华, 李正强, 谢一凇, 洪津, 涂碧海, 孟炳寰 . 高分五号 02 星多角度偏振成像仪在轨辐射性能初步评价[J]. 大气与环境光学学报, 2023, 18(4): 310-322. |
[2] | 蔡振锋, 李 丁∗, 黄海虹. 2021 年春季沙尘传输对徐州地区气溶胶演变影响分析[J]. 大气与环境光学学报, 2022, 17(4): 409-419. |
[3] | 刘凯迪, 吴海滨, 陈新兵, 宋 伟∗, 徐 雷. 基于Mie 散射理论水雾介质红外辐射衰减的校正研究[J]. 大气与环境光学学报, 2022, 17(4): 476-484. |
[4] | 冯仕凌, 崔 琪, 郭心骞, 邱选兵, 郭古青, 和小虎, 李传亮∗. 小波降噪对TDLAS 干涉抑制的研究[J]. 大气与环境光学学报, 2022, 17(3): 328-335. |
[5] | 曹子昊, 曾 议∗, 鲁晓峰, 廖 捷, 杨东上, 常 振, 司福祺, 奚 亮, . 成像差分吸收光谱技术的软件研发与数据反演[J]. 大气与环境光学学报, 2022, 17(2): 249-257. |
[6] | 赵 锋, 冯亚娟∗. 2-甲基甘油酸-硫酸/甲磺酸团簇的大气物化特性研究[J]. 大气与环境光学学报, 2022, 17(2): 213-219. |
[7] | 李 坤∗, 王炜罡, 杜 林, 葛茂发, . 芳香化合物生成二次有机气溶胶的 光学性质研究进展[J]. 大气与环境光学学报, 2022, 17(1): 29-44. |
[8] | 朱 鑫, 陈庆彩∗, 王擎雯, 李锦雯, 程静雯, 郎涵睿, 王茂颖. 西安市大气颗粒物中棕碳的吸光性研究[J]. 大气与环境光学学报, 2022, 17(1): 125-134. |
[9] | 朱晟男, 李铸杰, 马 嫣, 戈逸峰, 郑 军∗. 南京青奥会期间棕碳对大气颗粒物光吸收贡献研究[J]. 大气与环境光学学报, 2021, 16(6): 504-519. |
[10] | 刘强强, 朱宏历, 郭古青, 王泽育, 冯仕凌, 邱选兵, 何秋生, 李传亮∗. 基于中红外量子级联激光器的SO2 和SO3 检测研究[J]. 大气与环境光学学报, 2021, 16(5): 424-431. |
[11] | 冀春延, 赵敏杰∗, 周海金, 司福祺, 刘建国. 紫外高光谱探测仪实验室辐照度定标研究[J]. 大气与环境光学学报, 2021, 16(3): 168-176. |
[12] | 王歆远, 司福祺∗, 赵敏杰, 周海金, 江 宇, 汪世美. 星载EMI在轨光谱定标方法研究[J]. 大气与环境光学学报, 2021, 16(3): 177-185. |
[13] | 王肖汉, 徐翼洲, 张成歆∗, 吴 跃, 孙中平, 刘 诚, . 基于EMI 观测的珠三角地区对流层NO2 柱浓度时空变化特征分析[J]. 大气与环境光学学报, 2021, 16(3): 197-206. |
[14] | 杨东上, 曾 议, 罗宇涵, 周海金, 司福祺∗, 刘文清. 基于EMI 遥感NO2 技术监测澳洲森林火灾活动[J]. 大气与环境光学学报, 2021, 16(3): 207-214. |
[15] | 钱园园, 司福祺, 罗宇涵, 周海金, 杨东上, 杨太平, 王 煜∗. EMI 南极臭氧柱总量反演研究[J]. 大气与环境光学学报, 2021, 16(3): 215-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||