大气与环境光学学报 ›› 2020, Vol. 15 ›› Issue (6): 402-412.
陈岩1;2, 王炜罡1;2∗, 刘明元1;2, 葛茂发1;2
收稿日期:
2020-09-01
修回日期:
2020-10-11
出版日期:
2020-11-28
发布日期:
2020-12-10
通讯作者:
E-mail: gemaofa@iccas.ac.cn
E-mail:wangwg@iccas.ac.cn
作者简介:
陈 岩 (1996- ), 山东邹城人, 博士研究生, 主要从事纳米颗粒物方面的研究。 E-mail: vrgchenyan@iccas.ac.cn
基金资助:
Chen Yan1;2, Wang Weigang1;2∗, Liu Mingyuan1;2, Ge Maofa1;2
Received:
2020-09-01
Revised:
2020-10-11
Published:
2020-11-28
Online:
2020-12-10
Contact:
Weigang Wang
E-mail:wangwg@iccas.ac.cn
摘要: 纳米颗粒物是大气颗粒物的重要组成部分, 对大气环境、气候变化以及人群健康有着重要的影响。纳米颗粒 物物理化学特性, 特别是化学组成, 在其中起着重要的作用。总结了国内外主要的纳米颗粒物化学成分测量技术, 重 点介绍了不同测量技术的工作原理和相关仪器的典型结构, 并结合大气环境研究中的应用实例, 分析了不同测量技术 的应用范围及优缺点, 最后展望了纳米颗粒物测量技术及应用的发展方向。
中图分类号:
陈岩, 王炜罡, ∗, 刘明元, 葛茂发, . 纳米颗粒物化学成分测量技术及其应用 #br#[J]. 大气与环境光学学报, 2020, 15(6): 402-412.
Chen Yan, Wang Weigang, ∗, Liu Mingyuan, Ge Maofa, . Measurement Technologies of Nanoparticle Chemical Composition and Their Application #br# [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(6): 402-412.
[1] | Heal M R, Kumar P, Harrison R M. Particles, air quality, policy and health [J]. Chemical Society Reviews, 2012, 41(19): |
66 | 06-6630. |
[2] | Hu D W, Chen J M, Ye X N, et al. Hygroscopicity and evaporation of ammonium chloride and ammonium nitrate: Relative |
humidity and size effects on the growth factor [J]. Atmospheric Environment, 2011, 45(14): 2349-2355. | |
[3] | Warheit D B, Sayes C M, Reed K L, et al. Health effects related to nanoparticle exposures: Environmental, health and safety |
considerations for assessing hazards and risks [J]. Pharmacology & therapeutics, 2008, 120(1): 35-42. | |
[4] | Kerminen V M, Chen X M, Vakkari Ville, et al. Atmospheric new particle formation and growth: Review of field observations |
[J] | Environmental Research Letters, 2018, 13(10): 103003. |
[5] | Kumar P, Pirjola L, Ketzel M, et al. Nanoparticle emissions from 11 non-vehicle exhaust sources-A review [J]. Atmospheric |
Environment, 2013, 67: 252-277. | |
[6] | Liu P, Ziemann P J, Kittelson D B, et al. Generating particle beams of controlled dimensions and divergence: I. theory of |
particle motion in aerodynamic lenses and nozzle expansions [J]. Aerosol Science and Technology, 1995, 22(3): 293-313. | |
[7] | Liu P, Ziemann P J, Kittelson D B, et al. Generating particle beams of controlled dimensions and divergence: II. experimental |
evaluation of particle motion in aerodynamic lenses and nozzle expansions [J]. Aerosol Science and Technology, 1995, 22(3): | |
31 | 4-324. |
[8] | Wang X L, Kruis F E, Mcmurry P H. Aerodynamic focusing of nanoparticles: I. guidelines for designing aerodynamic lenses |
for nanoparticles [J]. Aerosol Science and Technology, 2005, 39(7): 611-623. | |
[9] | Wang X L, Gidwani A, Girshick S L, et al. Aerodynamic focusing of nanoparticles: II. numerical simulation of particle motion |
through aerodynamic lenses [J]. Aerosol Science and Technology, 2005, 39(7): 624-636. | |
[10] | Lee K S, Kim S, Lee D. Aerodynamic focusing of 5-50nm nanoparticles in air [J]. Journal of Aerosol Science, 2009, 40(12): |
10 | 10-1018. |
[11] | Jayne J T, Leard D C, Zhang X F, et al. Development of an aerosol mass spectrometer for size and composition analysis of |
submicron particles [J]. Aerosol Science & Technology, 2000, 33(1): 49-70. | |
[12] | Decarlo P F, Kimmel J R, Trimborn A, et al. Field-deployable, high-resolution, time-of-flight aerosol mass spectrometer [J]. |
Analytical Chemistry, 2006, 78(24): 8281-8289. | |
[13] | Kenseth C M, Petrucci G A. Characterization of a bipolar near-infrared laser desorption/ionization aerosol mass spectrometer |
[J] | Aerosol Science and Technology, 2016, 50(8): 790-801. |
[14] | Li Y J, Sun Y L, Zhang Q, et al. Real-time chemical characterization of atmospheric particulate matter in China: A review [J]. |
Atmospheric Environment, 2017, 158: 270-304. | |
[15] | Zelenyuk A, Imre D, Wilson J, et al. Airborne single particle mass spectrometers (SPLAT II & miniSPLAT) and new software |
for data visualization and analysis in a geo-spatial context [J]. Journal of the American Society for Mass Spectrometry, 2015, | |
26 | (2): 257-270. |
[16] | Zelenyuk A, Yang J, Imre D. Comparison between mass spectra of individual organic particles generated by UV laser ablation |
and in the IR/UV two-step mode [J]. International Journal of Mass Spectrometry, 2009, 282(1-2): 6-12. | |
[17] | Zelenyuk A, Yang J, Imre D, et al. Achieving size independent hit-rate in single particle mass spectrometry [J]. Aerosol Science |
and Technology, 2009, 43(4): 305-310. | |
[18] | Zauscher M D, Moore M J, Lewis G S, et al. Approach for measuring the chemistry of individual particles in the size range |
critical for cloud formation [J]. Analytical Chemistry, 2011, 83(6): 2271-2278. | |
[19] | Voisin D, Smith J N, Sakurai H, et al. Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical |
composition [J]. Aerosol Science and Technology, 2003, 37(6): 471-475. | |
[20] | Zhang R Y, Wang L, Khalizov A F, et al. Formation of nanoparticles of blue haze enhanced by anthropogenic pollution [J]. |
Proceedings of the National Academy of Sciences, 2009, 106(42): 17650. | |
[21] | Chen X T, Jiang J K, Chen D R. A soft X-ray unipolar charger for ultrafine particles [J]. Journal of Aerosol Science, 2019, 133: |
66 | -71. |
[22] | Kreisberg N M, Spielman S R, Eiguren-Fernandez A, et al. Water condensation-based nanoparticle charging system: Physical |
and chemical characterization [J]. Aerosol Science and Technology, 2018, 52(10): 1167-1177. | |
[23] | Yuan B., Koss A R, Warneke C, et al. Proton-transfer-reaction mass spectrometry: Applications in atmospheric sciences [J]. |
Chemical Reviews, 2017, 117(21): 13187-13229. | |
[24] | Zhao R. The recent development and application of chemical ionization mass spectrometry in atmospheric chemistry [J]. In |
Encyclopedia of Analytical Chemistry, 2018, 1-33. | |
[25] | Wang S Y, Zordan C A, Johnston M V. Chemical characterization of individual, airborne sub-10-nm particles and molecules |
[J] | Analytical Chemistry, 2006, 78(6): 1750-1754. |
[26] | Wang S Y, Johnston M V. Airborne nanoparticle characterization with a digital ion trap-reflectron time of flight mass spectrometer [J]. International Journal of Mass Spectrometry, 2006, 258(1-3): 50-57. |
[27] | Horan A J, Krasnomowitz J M, Johnston M V. Particle size and chemical composition effects on elemental analysis with the |
nano aerosol mass spectrometer [J]. Aerosol Science and Technology, 2017, 51(10): 1135-1143. | |
[28] | Johnston M V, Wang S Y, Reinard M S. Nanoparticle mass spectrometry: Pushing the limit of single particle analysis [J]. |
Applied spectroscopy, 2006, 60(10): 264A-272A. | |
[29] | Laitinen T, Hartonen K, Kuimaia M, et al. Aerosol time-of-flight mass spectrometer for measuring ultrafine aerosol particles |
[J] | Boreal Environment Research, 2009, 14(4): 539-549. |
[30] | Gonser S, Held A. A chemical analyzer for charged ultrafine particles [J]. Atmospheric Measurement Techniques, 2013, 6(9): |
2339. | |
[31] | He S, Li L, Duan H, et al. Aerosol analysis via electrostatic precipitation-electrospray ionization mass spectrometry [J]. |
Analytical Chemistry, 2015, 87(13): 6752-6760. | |
[32] | Wagner A C, Bergen A, Brilke S, et al. Size-resolved online chemical analysis of nanoaerosol particles: A thermal desorption |
differential mobility analyzer coupled to a chemical ionization time-of-flight mass spectrometer [J]. Atmospheric Measurement | |
Techniques, 2018, 11(10): 5489-5506. | |
[33] | Chen H, Venter A, Cooks R G. Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex |
mixtures without sample preparation [J]. Chemical Communications, 2006, 19: 2042-2044. | |
[34] | Gallimore P J, Kalberer M. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry |
analysis of organic aerosols [J]. Environmental Science & Technology, 2013, 47(13): 7324-7331. | |
[35] | Lopez-Hilfiker F D, Pospisilova V, Huang W, et al. An extractive electrospray ionization time-of-flight mass spectrometer |
(EESI-TOF) for online measurement of atmospheric aerosol particles [J]. Atmospheric Measurement Techniques, 2019, 12(9): | |
48 | 67-4886. |
[36] | Horan A J, Apsokardu M J, Johnston M V. Droplet assisted inlet ionization for online analysis of airborne nanoparticles [J]. |
Analytical Chemistry, 2017, 89(2): 1059-1062. | |
[37] | Zhao J, Eisele F L, Titcombe M, et al. Chemical ionization mass spectrometric measurements of atmospheric neutral clusters |
using the cluster-CIMS [J]. Journal of Geophysical Research, 2010, 115: D08205. | |
[38] | Jiang J K, Zhao J, Chen M D, et al. First measurements of neutral atmospheric cluster and 1-2 nm particle number size |
distributions during nucleation events [J]. Aerosol Science and Technology, 2011, 45(4): ii-v. | |
[39] | Lei T, Ma N, Hong J, et al. Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating |
hygroscopic properties of sub-10 nm aerosol nanoparticles [J]. Atmospheric Measurement Techniques, 2020, 2020: 1-48. | |
[40] | Wang Z, Su H, Wang X, et al. Scanning supersaturation condensation particle counter applied as a nano-CCN counter for sizeresolved analysis of the hygroscopicity and chemical composition of nanoparticles [J]. Atmospheric Measurement Techniques, |
20 | 15, 8(5): 2161-2172. |
[41] | Li W J, Xu L, Liu X H, et al. Air pollution-aerosol interactions produce more bioavailable iron for ocean ecosystems [J]. |
Science Advances, 2017, 3(3): e1601749. | |
[42] | Makel ¨ a J M, Ho ¨ ffmann T, Holzke C, et al. Biogenic iodine emissions and identification of end-products in coastal ultrafine |
particles during nucleation bursts [J]. Journal of Geophysical Research, 2002, 107(D19), doi:10.1029/2001JD000580. | |
[43] | Chen Y Z, Shah N, Huggins F E, et al. Characterization of ambient airborne particles by energy-filtered transmission electron |
microscopy [J]. Aerosol Science and Technology, 2005, 39(6): 509-518. | |
[44] | Huang D, Hua X, Xiu G L, et al. Secondary ion mass spectrometry: The application in the analysis of atmospheric particulate |
matter [J]. Analytica Chimica Acta, 2017, 989: 1-14. | |
[45] | Hoppe P. NanoSIMS: A new tool in cosmochemistry [J]. Applied Surface Science, 2006, 252(19): 7102-7106. |
[46] | Dazzi A, Prater C B, Hu Q C, et al. AFM-IR: Combining atomic force microscopy and infrared spectroscopy for nanoscale |
chemical characterization [J]. Applied spectroscopy, 2012, 66(12): 1365-1384. | |
[47] | Dazzi A, Prater C B. AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging [J]. |
Chemical Reviews, 2017, 117(7): 5146-5173. | |
[48] | Shi X, Coca-Lopez N, Janik J, et al. Advances in tip-enhanced near-field raman microscopy using nanoantennas [J]. Chemical |
Reviews, 2017, 117(7): 4945-4960. | |
[49] | Gao Y, Johnston M V. Online deposition of nano-aerosol for matrix-assisted laser desorption/ionization mass spectrometry [J]. |
Rapid Communication Mass Spectrometry, 2009, 23(24): 3963-3968. | |
[50] | Smith J N, Moore K F, Mcmurry P H, et al. Atmospheric measurements of sub-20 nm diameter particle chemical composition |
by thermal desorption chemical ionization mass spectrometry [J]. Aerosol Science and Technology, 2004, 38(2): 100-110. | |
[51] | Smith J N, Moore K F, Eisele F L, et al. Chemical composition of atmospheric nanoparticles during nucleation events in |
Atlanta [J]. Journal of Geophysical Research-Atmospheres, 2005, 110: D22S03. | |
[52] | Yao L, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity |
[J] | Science, 2018, 361(6399): 278-281. |
[53] | Klems J P, Pennington M R, Zordan C A, et al. Apportionment of motor vehicle emissions from fast changes in number concentration and chemical composition of ultrafine particles near a roadway intersection [J]. Environmental Science & Technology, |
20 | 11, 45(13): 5637-5643. |
[54] | Bzdek B R, Horan A J, Pennington M R, et al. Silicon is a frequent component of atmospheric nanoparticles [J]. Environmental |
Science & Technology, 2014, 48(19): 11137-11145. | |
[55] | Lawler M J, Whitehead J, O’dowd C, et al. Composition of 15-85 nm particles in marine air [J]. Atmospheric Chemistry and |
Physics, 2014, 14(21): 11557-11569. | |
[56] | Bzdek B R, Lawler M J, Horan A J, et al. Molecular constraints on particle growth during new particle formation [J]. Geophysical Research Letters, 2014, 41(16): 6045-6054. |
[57] | Bzdek B R, Horan A J, Pennington M R, et al. Quantitative and time-resolved nanoparticle composition measurements during |
new particle formation [J]. Faraday Discussions, 2013, 165: 25-43. | |
[58] | Hodshire A L, Lawler M J, Zhao J, et al. Multiple new-particle growth pathways observed at the US DOE Southern Great |
Plains field site [J]. Atmospheric Chemistry and Physics, 2016, 16(14): 9321-9348. | |
[59] | Lawler M J, Rissanen M P, Ehn M, et al. Evidence for diverse biogeochemical drivers of boreal forest new particle formation |
[J] | Geophysical Research Letters, 2018, 45(4): 2038-2046. |
[60] | Glicker H S, Lawler M J, Ortega J, et al. Chemical composition of ultrafine aerosol particles in central Amazonia during the |
wet season [J]. Atmospheric Chemistry and Physics, 2019, 19(20): 13053-13066. | |
[61] | Laitinen T, Ehn M, Junninen H, et al. Characterization of organic compounds in 10- to 50-nm aerosol particles in boreal forest |
with laser desorption-ionization aerosol mass spectrometer and comparison with other techniques [J]. Atmospheric Environment, 2011, 45(22): 3711-3719. | |
[62] | Laitinen T, Junninen H, Parshintsev J, et al. Changes in concentration of nitrogen-containing compounds in 10 nm particles of |
boreal forest atmosphere at snowmelt [J]. Journal of Aerosol Science, 2014, 70: 1-10. | |
[63] | Lawler M J, Draper D C, Smith J N. Atmospheric fungal nanoparticle bursts [J]. Science Advances, 2020, 6(3): eaax9051. |
[64] | Sinha B W, Hoppe P, Huth J, et al. Sulfur isotope analyses of individual aerosol particles in the urban aerosol at a central |
European site (Mainz, Germany) [J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7217-7238. | |
[65] | Ghosal S, Weber P K, Laskin A. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale |
imaging mass spectrometry: Insight into particle origin and chemistry [J]. Analytical Methods, 2014, 6(8): 2444-2451. | |
[66] | Li K, Sinha B, Hoppe P. Speciation of nitrogen-bearing species using negative and positive secondary ion spectra with nano |
secondary ion mass spectrometry [J]. Analytical Chemistry, 2016, 88(6): 3281-3288. | |
[67] | Chen H H, Chee S, Lawler M J, et al. Size resolved chemical composition of nanoparticles from reactions of sulfuric acid with |
ammonia and dimethylamine [J]. Aerosol Science and Technology, 2018, 52(10): 1120-1133. | |
[68] | Or V W, Estillore A D, Tivanski A V, et al. Lab on a tip: Atomic force microscopy-photothermal infrared spectroscopy |
of atmospherically relevant organic/inorganic aerosol particles in the nanometer to micrometer size range [J]. Analyst, 2018, | |
14 | 3(12): 2765-2774. |
[1] | 张亭禄, 陈树果, 薛程. 海洋水体光学性质测量技术研究进展[J]. 大气与环境光学学报, 2020, 15(1): 23-39. |
[2] | 赵南京, 程钊, 殷高方, 马明俊, 董鸣, 王翔, 覃志松, 甘婷婷, 张小玲, 刘建国, 刘文清. 离散三维荧光光谱法海洋浮游藻类群落结构快速测量技术[J]. 大气与环境光学学报, 2020, 15(1): 62-71. |
[3] | 李珍珍 张季. 典型类型气溶胶散射特性的计算分析[J]. 大气与环境光学学报, 2018, 13(4): 250-257. |
[4] | 陈杨 赵卫雄 徐学哲 阳成强 林晓晓 盖艳波 张为俊. 化学放大法测量大气过氧自由基的技术进展[J]. 大气与环境光学学报, 2017, 12(4): 241-253. |
[5] | 王丹 谢品华 胡仁志 秦敏 陈浩 段俊 朱国梁 卢雪. 大气环境NO3自由基探测技术研究进展[J]. 大气与环境光学学报, 2015, 10(2): 102-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||