[1] |
Poschl U. Atmospheric aerosols: composition, transformation, climate and health effects [J]. Angewandte Chemie. International Edition. 2005, 44 (46): 7520-7540.
|
[2] |
Kulkarni P, Baron P A, Willeke K. Aerosol Measurement: Principles, Techniques, and Applications [M]. 3rd. John Wiley &
|
|
Sons, 1996: 883.
|
[3] |
Flagan R C. History of electrical aerosol measurements [J]. Aerosol Science and Technology, 1998, 28(4): 301-380.
|
[4] |
Jiang J, Chen M, Kuang C, et al. Electrical mobility spectrometer using a diethylene glycol condensation particle counter for
|
|
measurement of aerosol size distributions down to 1 nm [J]. Aerosol Science and Technology, 2011, 45(4): 510-521.
|
[5] |
Wang S C, Flagan R C. Scanning electrical mobility spectrometer [J]. Aerosol Science and Technology, 1990, 13(2): 230-240.
|
[6] |
Wiedensohler A, Birmili W, Nowak A, et al. Mobility particle size spectrometers: harmonization of technical standards and data
|
|
structure to facilitate high quality long-term observations of atmospheric particle number size distributions [J]. Atmospheric
|
|
Measurement Techniques, 2012, 5(3): 657-685.
|
[7] |
Liu J, Jiang J, Zhang Q, et al. A spectrometer for measuring particle size distributions in the range of 3 nm to 10 µm [J].
|
|
Frontiers of Environmental Science & Engineering, 2016, 10(1): 63-72.
|
[8] |
Alonso M, Alguacil F J. Particle size distribution modification during and after electrical charging: Comparison between a
|
|
corona ionizer and a radioactive neutralizer [J]. Aerosol and Air Quality Research, 2008, 8(4): 366-380.
|
[9] |
Hernandez-Sierra A, Alguacil F J, Alonso M. Unipolar charging of nanometer aerosol particles in a corona ionizer [J]. Journal
|
|
of Aerosol Science, 2003, 34(6): 733-745.
|
[10] |
Intra P, Tippayawong N. An overview of unipolar charger developments for nanoparticle charging [J]. Aerosol and Air Quality
|
|
Research, 2011, 11(2): 187-209.
|
[11] |
Laschober C, Kaufman S L, Reischl G, et al. Comparison between an unipolar corona charger and a polonium-based bipolar
|
|
neutralizer for the analysis of nanosized particles and biopolymers [J]. Journal of Nanoscience and Nanotechnology, 2006,
|
6( |
5): 1474-1481.
|
[12] |
Chen X, Jiang J. Retrieving the ion mobility ratio and aerosol charge fractions for a neutralizer in real-world applications [J].
|
|
Aerosol Science and Technology, 2018, 52(10): 1145-1155.
|
[13] |
Chen X, Mcmurry P H, Jiang J. Stationary characteristics in bipolar diffusion charging of aerosols: Improving the performance
|
|
of electrical mobility size spectrometers [J]. Aerosol Science and Technology, 2018, 52(8): 809-813.
|
[14] |
Tigges L, Jain A, Schmid H J. On the bipolar charge distribution used for mobility particle sizing: Theoretical considerations
|
[J] |
Journal of Aerosol Science, 2015, 88: 119-134.
|
[15] |
Adachi M, Kousaka Y, Okuyama K. Unipolar and bipolar diffusion charging of ultrafine aerosol-particles [J]. Journal of
|
|
Aerosol Science, 1985, 16(2): 109-123.
|
[16] |
Chen X T. Study of Aerosol Charging and Its Applications in Submicron Aerosol Measurement [D]. Beijing: Doctoral Dissertation of Tsinghua University, 2019.
|
|
陈小彤. 气溶胶荷电研究及其在亚微米颗粒物测量中的应用 [D]. 北京: 清华大学博士论文, 2019.
|
[17] |
Jiang J, Kim C, Wang X, et al. Aerosol charge fractions downstream of six bipolar chargers: Effects of ion source, source
|
|
activity, and flowrate [J]. Aerosol Science and Technology, 2014, 48(12): 1207-1216.
|
[18] |
Chen X, Jiang J, Chen D R. A soft X-ray unipolar charger for ultrafine particles [J]. Journal of Aerosol Science, 2019, 133:
|
66 |
-71.
|
[19] |
Han B, Shimada M, Okuyama K, et al. Classification of monodisperse aerosol particles using an adjustable soft X-ray charger
|
[J] |
Powder Technology, 2003, 135: 336-344.
|
[20] |
Lee H M, Soo Kim C, Shimada M, et al. Bipolar diffusion charging for aerosol nanoparticle measurement using a soft X-ray
|
|
charger [J]. Journal of Aerosol Science, 2005, 36(7): 813-829.[21] Shimada M, Han B W, Okuyama K, et al. Bipolar charging of aerosol nanoparticles by a soft X-ray photoionizer [J]. Journal
|
|
of Chemical Engineering of Japan, 2002, 35(8): 786-793.
|
[22] |
Tigges L, Wiedensohler A, Weinhold K, et al. Bipolar charge distribution of a soft X-ray diffusion charger [J]. Journal of
|
|
Aerosol Science, 2015, 90: 77-86.
|
[23] |
Fuchs N A. On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere [J]. Geofisica Pura E
|
|
Applicata, 1963, 56(1): 185-193.
|
[24] |
Hoppel W A, Frick G M. The nonequilibrium character of the aerosol charge distributions produced by neutralizes [J]. Aerosol
|
|
Science and Technology, 2007, 12(3): 471-496.
|
[25] |
Wiedensohler A, Lutkemeier E, Feldpausch M, et al. Investigation of the bipolar charge-distribution at various gas conditions
|
[J] |
Journal of Aerosol Science, 1986, 17(3): 413-416.
|
[26] |
De La Verpilliere J L, Swanson J J, Boies A M. Unsteady bipolar diffusion charging in aerosol neutralisers: A non-dimensional
|
|
approach to predict charge distribution equilibrium behaviour [J]. Journal of Aerosol Science, 2015, 86: 55-68.
|
[27] |
Wiedensohler A. An approximation of the bipolar charge-distribution for particles in the sub-micron size range [J]. Journal of
|
|
Aerosol Science, 1988, 19(3): 387-389.
|
[28] |
Xue M. Modification of Condensation Particle Counters for the Enhanced Detection of 1-3 nm Particles [D]. Beijing: Master′s
|
|
Thesis of Tsinghua University, 2019.
|
|
薛 墨. 改进冷凝生长技术以提高 1-3 纳米大气颗粒物检测效率 [D]. 北京: 清华大学硕士论文, 2019.
|
[29] |
Chen D R, Pui D Y H. A high efficiency, high throughput unipolar aerosol charger for nanoparticles [J]. Journal of Nanoparticle
|
|
Research, 1999, (1): 115-126.
|
[30] |
Cai R, Yang D, Fu Y, et al. Aerosol surface area concentration: a governing factor in new particle formation in Beijing [J].
|
|
Atmospheric Chemistry and Physics, 2017, 17(20): 12327-12340.
|
[31] |
Xue Mo, Fu Yueyun, Cai Runlong, et al. Penetration of 1∼3 nm particles through a diethylene glycol scanning mobility particle
|
|
spectrometer (DEG-SMPS) [J]. Acta Scientiae Circumstantiae, 1999, 39(9): 2896-2902 (in Chinese).
|
|
薛 墨, 傅月芸, 蔡润龙, 等. 1∼3 nm 颗粒物在粒径分布测量仪中的通过效率研究 [J]. 环境科学学报, 2019, 39(9):
|
28 |
96-2902.
|
[32] |
Kangasluoma J, Attoui M, Junninen H, et al. Sizing of neutral sub 3 nm tungsten oxide clusters using airmodus particle size
|
|
magnifier [J]. Journal of Aerosol Science, 2015, 87: 53-62.
|
[33] |
Peineke C, Attoui M, Robles R, et al. Production of equal sized atomic clusters by a hot wire [J]. Journal of Aerosol Science,
|
20 |
09, 40(5): 423-430.
|
[34] |
Peineke C, Attoui M B, Schmidt-Ott A. Using a glowing wire generator for production of charged, uniformly sized nanoparticles at high concentrations [J]. Journal of Aerosol Science, 2006, 37(12): 1651-1661.
|
[35] |
De La Mora J F, Kozlowski J. Hand-held differential mobility analyzers of high resolution for 1∼30 nm particles: Design and
|
|
fabrication considerations [J]. Journal of Aerosol Science, 2013, 57: 45-53.
|
[36] |
Ude S, De La Mora J F. Molecular monodisperse mobility and mass standards from electrosprays of tetra-alkyl ammonium
|
|
halides [J]. Journal of Aerosol Science, 2005, 36(10): 1224-1237.
|
[37] |
Gormley P G, Kennedy M. Diffusion from a stream flowing through a cylindrical tube [J]. Proceedings of the Royal Irish
|
|
Academy, Section A (Mathematical, Astronomical and Physical Science), 1949, 52(12): 163-169.
|
[38] |
Yoon Y H, Bong C, Kim D S. Evaluation of the performance of a soft X-ray charger for the bipolar charging of nanoparticles
|
[J] |
Particuology, 2015, 18: 165-169.
|
[39] |
Reischl G P, Makela J M, Karch R, et al. Bipolar charging of ultrafine particles in the size range below 10 nm [J]. Journal of
|
|
Aerosol Science, 1996, 27(6): 931-949
|