大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (2): 117-126.

• 环境光学监测技术 • 上一篇    下一篇

基于Adam 注意力机制的PM2:5浓度预测方法

张怡文, 袁宏武∗, 孙 鑫, 吴海龙, 董云春   

  1. 安徽新华学院信息工程学院, 安徽 合肥 230088
  • 收稿日期:2019-12-16 修回日期:2020-11-29 出版日期:2021-03-28 发布日期:2021-03-28
  • 通讯作者: E-mail: yuanhongwu@axhu.edu.cn E-mail:yuanhongwu@axhu.edu.cn
  • 作者简介:张怡文 (1980 - ), 女, 安徽阜阳人, 硕士, 教授, 主要从事污染物预测模型的研究。 E-mail: yiwenzh@ustc.edu.cn
  • 基金资助:
    Supported by Anhui University Provincial Natural Science Research Project (安徽高校自然科学研究项目, KJ2019A0877), Anhui Provincial Quality Engineering Grassroots Teaching and Research Office Demonstration Project (安徽省省级质量工程基层教研室示范项目, 2018JYSSF111)

PM2:5 Concentration Prediction Method Based on Adam′s Attention Model

ZHANG Yiwen, YUAN Hongwu∗, SUN Xin, WU Hailong, DONG Yunchun   

  1. College of Information Engineering, Anhui Xinhua University, Hefei 230088, China
  • Received:2019-12-16 Revised:2020-11-29 Published:2021-03-28 Online:2021-03-28
  • Contact: wu hongyuan E-mail:yuanhongwu@axhu.edu.cn

摘要: 大气 PM2:5 浓度是一种具有较强时序特征的数据, 故目前关于 PM2:5 浓度的预测多选择 RNN、 LSTM 等 序列模型进行。但由于 RNN、 LSTM 等模型对不同时刻输入的数据都采用相同的权重进行计算, 不符合类脑设 计, 造成 PM2:5 浓度预报准确率较低。针对以上问题, 提出一种基于 Adam 注意力机制的 PM2:5 预测方法 (AT-RNN 和AT-LSTM), 该方法首先通过 Adam 算法寻找 RNN 或 LSTM 的最优参数并在 Encoder 阶段引入注意力机制, 将 注意力权重分配给具有时间序列特征的输入, 再进行 Decoder 解析和预测。通过实验, 对比了 BP、 RNN、 LSTM 和AT-RNN、 AT-LSTM 预测合肥市 PM2:5 浓度的效果。结果表明, 基于 Adam 注意力模型的预测方法准确率优于其它 方法, 证明该方法在污染物预测中的有效性。

关键词: PM2:5, 神经网络, Adam 注意力模型

Abstract: Atmospheric PM2:5 concentration is a kind of data with strong time series characteristics, so currently the prediction of PM2:5 concentration is mostly based on RNN, LSTM and other sequence models. However, RNN, LSTM and the other similar models use the same weight to calculate the input data at different times, which is not in line with the brain-like design, resulting in the low accuracy of PM2:5 concentration prediction. In view of the above problems, a PM2:5 prediction method (AT-RNN and AT-LSTM) based on Adam attention mechanism is proposed. This method firstly looks for the optimal parameters of RNN or LSTM through Adam algorithm, and introduces attention mechanism in Encoder stage to assign attention weight to input with time series characteristics, and then carries out Decoder analysis and prediction. Through the experiment, the prediction effects of BP, RNN, LSTM and AT-RNN and AT-LSTM on PM2:5 concentration in Hefei city were compared. The results show that the prediction method based on Adam attention model is more accurate than other methods, which proves the effectiveness of this method in pollutant prediction.

Key words: PM2:5, neural networks, Adam attention model

中图分类号: