大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (3): 201-213.

• 大气光学 • 上一篇    下一篇

南极臭氧柱总量的时空变化特性与影响因素分析

唐超礼 1, 郝德卫 1*, 魏圆圆 2, 戴聪明 3, 魏合理 3   

  1. 1 安徽理工大学电气与信息工程学院, 安徽 淮南 232001; 2 安徽大学互联网学院, 安徽 合肥 230039; 3 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
  • 收稿日期:2021-11-22 修回日期:2022-01-09 出版日期:2023-05-28 发布日期:2023-05-28
  • 通讯作者: E-mail: 2604264228@qq.com E-mail:2604264228@qq.com
  • 作者简介:唐超礼 (1980- ), 博士, 教授, 硕士生导师, 主要从事大气数据与信息技术研究。E-mail: chltang@mail.ustc.edu.cn
  • 基金资助:
    国家重点实验室专项基金资助项目 (201909), 安徽高校自然科学研究重点项目 (KJ2019A0103), 国家重点研发计划课题 (2019YFA0706004)

Temporal and spatial characteristics and influencing factors of total ozone column in Antarctic

TANG Chaoli 1, HAO Dewei 1*, WEI Yuanyuan 2, DAI Congming 3, WEI Heli 3   

  1. 1 Institute of Electrical & Information Engineering, Anhui University of Science and Technology, Huainan 232001, China; 2 School of Internet, Anhui University, Hefei 230039, China; 3 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2021-11-22 Revised:2022-01-09 Published:2023-05-28 Online:2023-05-28
  • Contact: De-Wei HAO E-mail:2604264228@qq.com
  • Supported by:
    Project Supported by the Supported by the Specialized Research Fund for State Key Laboratories;the University Natural Science Research Project of Anhui Province of China

摘要: 利用大气本底站监测数据验证了大气红外探测仪 (AIRS) 反演数据 (2003 年3 月―2021 年2 月), 在此基础上 基于AIRS数据分析了南极臭氧柱总量时空分布以及变化特性, 并进而利用线性回归、相关性分析、小波分析等方法, 结合平流层温度和海冰数据, 分析了南极臭氧柱总量变化特征的影响因素。结果表明: AIRS反演数据与大气本底站 监测数据的相关系数均在0.945 以上, 具有较高的准确度和平稳性。南极臭氧柱总量的时间变化具有很强的周期性, 谷值与谷值交替约为12 个月。通过小波时-频结合分析发现, 南极臭氧柱总量明显存在时间尺度为2、4、6、8~10、13 年 的周期, 其中震荡最剧烈的第一主周期13 年又以10 年为周期变化, 第二主周期6 年又以4 年为周期变化, 2003―2021 年内第一主周期经历了2 次高-低变化期, 第二主周期经历了4 次高-低变化期。臭氧柱总量随季节变化明显, 春季是 南极臭氧柱总量最高的季节, 冬季、夏季、秋季依次次之。南极臭氧的空间分布特征差异较大, 总体来看纬度越高, 臭 氧柱总量越低, 并在85° S附近达到最低值。南极洲大部分区域平流层温度与臭氧柱总量呈显著正相关, 统计结果显 示当平流层温度小于189 K时会出现臭氧洞; 南极海冰范围与南极臭氧柱总量变化基本一致, 两者皆存在2、6~8、12 ~14 年的变化周期, 但海冰范围变化要早一个月。

关键词: 南极, 臭氧柱总量, 小波分析, 平流层温度, 海冰范围

Abstract: The inversion data of Atmospheric infrared sounder (AIRS) from March 2003 to February 2021 were verified using the base data of Global Atmosphere Watch (GAW), and then based on AIRs data, the spatial and temporal distribution and variation characteristics of the total ozone column in Antarctica were analyzed. Moreover, combined with stratospheric temperature and sea ice data, linear regression, correlation analysis, wavelet analysis and other methods were performed to identify the key factors affecting the total ozone column in Antarctica. The results show that the correlation coefficient between AIRS inversion data and atmospheric watch station monitoring data is more than 0.945, indicating the high accuracy and stability of AIRS inversion data. The temporal variation of the total column of ozone in Antarctica has an obvious periodicity, with valley-valley alternating for about 12 months. The wavelet timefrequency analysis shows that the total amount of ozone column in Antarctic has obvious cycles with time scales of 2 years, 4 years, 6 years, 8-10 years and 13 years. Among them, the first main 13-year cycle with the most severe oscillation changes has a 10-year cycle, and the second main 6-year cycle has a 4-year cycle. From 2003 to 2021, the first main cycle experienced two high-low periods, and the second main cycle experienced four high-low periods. Furthermore, it is found that the total ozone column varies significantly with seasons, with spring being the season with the highest total ozone column in Antarctica, followed by winter, summer, and autumn. And there is a quite difference of the spatial distribution characteristics of ozone in Antarctica among seasons. Generally, the total ozone column decreases with the increase of the latitude, and reaches the bottom value near 85° S. The total column of ozone in most parts of Antarctica is significantly positively correlated with the stratospheric temperature, and the statistical results show that there will be an ozone hole when the stratospheric temperature is less than 189 k. The change of Antarctic sea ice extent is basically correlated with that of the total Antarctic ozone column, and both of them have a change cycle of 2 years, 6-8 years and 12-14 years, but the change of sea ice is one month earlier.

Key words: Antarctic, total ozone column, wavelet analysis, stratospheric temperature, sea ice extent

中图分类号: