大气与环境光学学报 ›› 2024, Vol. 19 ›› Issue (3): 381-390.doi: 10.3969/j.issn.1673-6141.2024.03.010

• 海洋光学 • 上一篇    

跨尺度蒸馏特征感知的轻量化水下图像增强

吴晓华 1, 李增禄 2,3, 许章华 4, 周景春 5*   

  1. 1 三明学院艺术设计学院, 福建 三明 365004; 2 三明学院网络技术中心, 福建 三明 365004; 3 三明学院福建省资源环境监测与可持续经营利用重点实验室, 福建 三明 365004; 4 福州大学地理与生态环境研究院, 福建 福州 350108; 5 大连海事大学信息科学技术学院, 辽宁 大连 116026
  • 收稿日期:2023-10-31 修回日期:2024-02-03 出版日期:2024-05-28 发布日期:2024-06-11
  • 通讯作者: E-mail: zhoujingchun03@qq.com E-mail:zhoujingchun03@qq.com
  • 作者简介:吴晓华 (1985- ), 女, 河北石家庄人, 硕士, 讲师, 主要从事图像处理和数字媒体技术方面的研究。E-mail: 20120875@fjsmu.edu.cn
  • 基金资助:
    国家自然科学基金青年基金 (62301105), 教育部教师函 [2021]13 号第二批人工智能助推教师队伍建设试点项目 (三明学院), 教育部产 学合作协同育人项目 (220503924155959), 三明市社科规划项目 (22062)

Lightweight Underwater Image Enhancement Network Based on Cross-Scale Deep Distillation Feature Perception

WU Xiaohua 1, LI Zenglu 2,3, XU Zhanghua 4, ZHOU Jingchun 5*   

  1. 1 School of Art & Design, Sanming University, Sanming 365004, China; 2 Network Technology Center, Sanming University, Sanming 365004, China; 3 Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming 365004, China; 4 Academy of Geography and Ecological Environment, Fuzhou University, Fuzhou 350108, China; 5 Information Science and Technology College, Dalian Maritime University, Dalian 116026, China
  • Received:2023-10-31 Revised:2024-02-03 Online:2024-05-28 Published:2024-06-11

摘要: 水下图像增强技术能够提升水下图像的质量和可视性, 在丰富数字媒体资源、水下探测、水下通信等领域具 有重要应用价值。近年来, 深度学习方法在水下图像增强方面取得了显著的效果。然而, 现有的方法计算复杂度高, 限制了它们在计算资源有限的场景中的使用。针对这一问题, 提出了一种轻量化的水下图像增强方法, 该方法基于 跨尺度深度蒸馏特征感知, 采用U型网络结构, 在保证非线性抽象层级抽取的同时, 大幅减少了模型参数量。实验结 果表明, 所提出方法在视觉效果和客观评价指标上均取得了具有竞争力的结果。

关键词: 水下图像增强, 轻量化, 跨尺度, 蒸馏特征, U型网络

Abstract: Underwater image enhancement technology has the potential to improve the quality and visibility of underwater images, which has important application value in enriching digital media resources, underwater exploration, underwater communication, and other fields. In recent years, deep learning methods have achieved remarkable results in underwater image enhancement. However, the existing methods suffer from high computational complexity, which limits their application in scenarios with limited computational resources. To address this problem, a lightweight underwater image enhancement method is proposed. The method is based on cross-scale depth distillation feature perception and adopts a U-shaped network structure, which can significantly reduce the model parameter size while ensuring the extraction of nonlinear abstract layers. The experimental results show that the proposed method has achieved competitive results in both visual effects and objective evaluation metrics.

Key words: underwater image enhancement, lightweight, cross-scale, distillation feature, U-shaped network

中图分类号: