Journal of Atmospheric and Environmental Optics ›› 2024, Vol. ›› Issue (2): 232-242.doi: 10.3969/j.issn.1673-6141.2024.02.009
PU Lilan , ZHANG Xianyun *
Received:
2022-10-20
Revised:
2022-11-24
Online:
2024-03-28
Published:
2024-04-18
Contact:
ZHANG XianYun
E-mail:mec.xyzhang@gzu.edu.cn
CLC Number:
PU Lilan , ZHANG Xianyun . Inversion of aerosol optical depth in Guiyang City based on LightGBM[J]. Journal of Atmospheric and Environmental Optics, 2024, (2): 232-242.
Add to citation manager EndNote|Ris|BibTeX
URL: http://gk.hfcas.ac.cn/EN/10.3969/j.issn.1673-6141.2024.02.009
[1]Su Q X, Jing L, Chen M Y.Review of atmospheric aerosol satellite remote sensing inversion [J].Science and Technology Innovation Review, 2019, 16(36):108-112 [2]苏倩欣, 李婧, 陈敏瑜.大气气溶胶卫星遥感反演研究综述 [J].科技创新导报, 2019, 16(36):108-112 [3]Sriperambudur U L, Sonnati C, Venkata N P, et al.Retrieval of Aerosol Optical Depth from Oceansat-2 OCM [J].Open Journal of Marine Science, 2015, 5(4):443-454 [4]Liao H, Peter J, Serena H, et al.Interactions between tropospheric chemistry and aerosols in a unified general circulation model [J].Journal of Geophysical Research: Atmospheres, 2003, 108(D1):4001- [5]Li Z Q, Xie Y S, Shi Y H, et al.Review of greenhouse gas and aerosol co-observation by satellite in atmospheric environment [J].Journal of Remote Sensing, 2022, 26(5):795-816 [6]李正强, 谢一凇, 石玉胜, 等.大气环境卫星温室气体和气溶胶协同观测综述 [J].遥感学报, 2022, 26(5):795-816 [7]Wang X, Wen H, Shi J, et al.Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China [J].Atmospheric Chemistry and Physics, 2018, 18(7):2119-2138 [8]Wang A Y, Kang P, Zhang Y, et al.Spatial variation and driving factors of aerosol optical thickness in Sichuan Basin from 2003 to 2018 [J].China Environmental Science, 2022, 42(2):528-538 [9]王安怡, 康平, 张洋, 等.年四川盆地气溶胶光学厚度空间分异及驱动因子 [J].中国环境科学, 2022, 42(2):528-538 [10]Jiang M D, Lin C, He Y Q, et al.Inversion of aerosol optical thickness at night using NPPVIIRS low-light level data [J].Journal of Remote Sensing, 2022, 26(3):493-504 [11]姜梦蝶, 陈林, 何玉青, 等.利用微光数据反演夜间气溶胶光学厚度 [J].遥感学报, 2022, 26(3):493-504 [12]Ge B Y, Yang L K, Chen X F, et al.Dark target method for aerosol retrieval from himawari-8 geostationary satellite data [J].Journal of Remote Sensing, 2018, 22(1):38-50 [13]葛邦宇, 杨磊库, 陈兴峰, 等.暗目标法的-静止卫星数据气溶胶反演 [J].遥感学报, 2018, 22(1):38-50 [14]Wang Y L, Bin Z, Hang Y, et al.Aerosol optical thickness was retrieved from GF-4 PMS data in urban areas [J].Remote Sensing Technology and Application, 2019, 34(3):564-570 [15]王艳莉, 周斌, 应航, 等.利用- 数据反演城市地区气溶胶光学厚度 [J].遥感技术与应用, 2019, 34(3):564-570 [16]Ma X Y, Chen Z H, Xin S, et al.Aerosol optical thickness inversion using GF-4 enhanced surface reflectance library support method [J].Journal of Remote Sensing, 2020, 24(5):578-595 [17]马小雨, 陈正华, 宿鑫, 等.增强型地表反射率库支持法的气溶胶光学厚度反演 [J].遥感学报, 2020, 24(5):578-595 [18]Tanre D, Deschamps P Y, Devaux C, et al.Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data [J].Journal of Geophysical Research Atmospheres, 1988, 93(D12):15955-15964 [19]Ma X Y.Inversion of aerosol optical thickness based on GF-4 and H8 satellites in summer [D]. Guangxi:Guangxi University, 2019. [20]马小雨.基于静止轨道卫星GF-4和H8的夏季气溶胶光学厚度反演研究[D].广西:广西大学, 2019. [21]Kaufman Y J, Tanré D, Remer L A, et al.Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer [J].Journal of Geophysical Research Atmospheres, 1997, 102(D14):51-17 [22]Hsu N C, Jeong M J, Bettenhausen C, et al.Enhanced Deep Blue aerosol retrieval algorithm: The second generation [J].Journal of Geophysical Research Atmospheres, 2013, 118(16):9296-9315 [23]Wang Z T, Xin J Y, Jia S L, et al.Inversion of aerosol optical Thickness from 16m camera data of Gaofen-1 satellite using dark target Method [J].Journal of Remote Sensing, 2015, 19(3):530-538 [24]王中挺, 辛金元, 贾松林, 等.利用暗目标法从高分一号卫星相机数据反演气溶胶光学厚度 [J].遥感学报, 2015, 19(3):530-538 [25]Bilal M, Nichol J E, Bleiweiss M P, et al.A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces[J]. [J].Remote Sensing of Environment, 2013, 136:135-145 [26]Jing W, Lin S.Comparison and Evaluation of Different MODIS Aerosol Optical Depth Products Over the Beijing-Tianjin-Hebei Region in China [J].IEEE journal of selected topics in applied earth observations and remote sensing, 2017, 10(3):835-844 [27]Shen W Q.AOD inversion and PM_(2.5) estimation with high spatial resolution [D].Zhejiang: Zhejiang University, 2020. [28]沈维青.高空间分辨率的AOD反演与PM_(2.5)估算研究[D].浙江:浙江大学, 2020. [29]Ristovski K, Vucetic S, Obradovic Z.Uncertainty Analysis of Neural-Network-Based Aerosol Retrieval [J].IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2):409-414 [30]Huttunen J, Kokkola H, Mielonen T, et al.Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms,non-linear regression and a radiative transfer-based look-up table [J].Atmospheric Chemistry & Physics, 2016, 16(13):8181-8191 [31]Liang T C, Lin S, Wang Y J.Inversion of regional aerosol optical thickness based on deep learning [J].Acta Photonica Sinica, 2021, 41(4):15-23 [32]梁天辰, 孙林, 王永吉.基于深度学习反演区域气溶胶光学厚度 [J].光学学报, 2021, 41(4):15-23 [33]Guolin K, Meng Q, Finely T, et al.LightGBM: A Highly Efficient Gradient Boosting Decision Tree[C], 2017.December. [34]Li Z S, Liang X G, Jin Y K, et al.Comparative analysis of PM_(25) prediction effect based on tree model in Beijing [J].Environmental Engineering, 2021, 39(6):106-113 [35]李志生, 梁锡冠, 金宇凯, 等.基于树模型的北京市_预测效果对比分析 [J].环境工程, 2021, 39(6):106-113 [36]Yu D C, Zhao W F, Kai N, et al.Visibility prediction model based on LightGBM algorithm [J].Journal of Computer Applications, 2021, 41(4):1035-1041 [37]余东昌, 赵文芳, 聂凯, 等.基于算法的能见度预测模型 [J].计算机应用, 2021, 41(4):1035-1041 [38]Chen J K, Mou F Y, Zhang Y C, et al.Prediction and comparison of hourly PM_(2.5) Concentration based on Multi-machine learning model [J]. [J].Journal of Nanjing Forestry University (Natural Science Edition), 2013, 46(5):152-160 [39]陈建坤, 牟凤云, 张用川, 等.基于多机器学习模型的逐小时_浓度预测对比 [J].南京林业大学学报自然科学版, 2022, 46(5):152-160 [40]Song S H, Liu S H, Kun W, et al.AOD remote sensing inversion and its coupling relationship with land use types in Guiyang City [J].Journal of Guizhou Normal University (Natural Science Edition), 2018, 36(6):59-67 [41]宋善海, 刘绥华, 王堃, 等.贵阳市遥感反演及其与土地利用类型的耦合关系 [J].贵州师范大学学报自然科学版, 2018, 36(6):59-67 [42]Ting F, Zhang X Y, Zhao F F, et al.Correlation analysis between AOD and PM_(2.5) in Guiyang city [J]. [J].Land and Natural Resources Research, 2021, (5):29-33 [43]付婷, 张显云, 赵飞飞, 等.贵阳市AOD与PM_(2.5)间的相关性分析[J]. [J].国土与自然资源研究, 2021, (5):29-33 [44]Hong Y, Huan L, Jing C.Monitoring and analysis of interannual variation of PM_(10) concentration in Guizhou Province based on remote sensing technology [J].Environmental Science and Management, 2015, 40(8):114-118 [45]尹红, 刘欢, 陈静.基于遥感技术的贵州省_浓度年际变化监测与分析研究 [J].环境科学与管理, 2015, 40(8):114-118 [46]Li Z B, Nan W, Zhang Z L, et al.Comprehensive Validation and Analysis of MODIS Aerosol Optical Thickness Products in China [J].China Environmental Science, 2020, 40(10):4190-4204 [47]李忠宾, 王楠, 张自力, 等.中国地区气溶胶光学厚度产品综合验证及分析 [J].中国环境科学, 2020, 40(10):4190-4204 [48]Guo X.Study on remote sensing AOD monitoring and spatio-temporal characteristics of long time series [D].Chengdu:University of Electronic Science and Technology of China, 2022. [49]郭祥.长时间序列区域AOD遥感监测与时空特征研究[D].成都:电子科技大学, 2022. [50]Sun Y J, Wang Z H, Qin Q M, et al.Land surface albedo inversion from Gaofen-4 geostationary satellite data [J].Journal of Remote Sensing, 2018, 22(2):220-233 [51]孙越君, 汪子豪, 秦其明, 等.高分四号静止卫星数据的地表反照率反演 [J].遥感学报, 2018, 22(2):220-233 [52]Zhuang L, Sun X L, Dan L, et al.Spatial and temporal characteristics of aerosol optical thickness in northern China from 2001 to 2017 [J].Chinese Journal of Environmental Sciences, 2018, 38(8):3177-3184 [53]刘状, 孙曦亮, 刘丹, 等.年中国北方省份气溶胶光学厚度的时空特征 [J].环境科学学报, 2018, 38(8):3177-3184 |
[1] | DONG Jiantao , LI Zhengqiang , XIE Yisong , FAN Cheng , HONG Jin , DAI Liuxin , GU Haoran , ZHENG Yang . Spatial distribution of fine-mode aerosol optical depth over land in spring 2022 based on DPC/GF-5(02) [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 323-338. |
[2] | ZHAI Yingchao , WANG Han , ZHAO Meiru , CHEN Ke , LI Linsen . Evalutaion of land-atmospheric decoupling methods for mountainous aerosol multi-angle polarization remote sensing [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 339-356. |
[3] | SUN Erchang , MA Jinji , WU Wenhan , YANG Guang , GUO Jinyu , . Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 59-72. |
[4] | WANG Xijin , XU Qingshan , FAN Chuanyu , CHENG Chen , QI Peng , XU Chidong . Lidar detection of diurnal variation of whole atmosphere aerosol optical depth [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 14-24. |
[5] | HUANG Dong , , LI Xin , ZHANG Yanna , ZHANG Yunxiang . Design and test of temperature control system for automatic sun photometer [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 73-81. |
[6] | WANG Xuelin, CHEN Wenzhong ∗. Variation characteristics and correlation between aerosol optical depth and net primary productivity in subarctic Pacific [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 558-569. |
[7] | WU Wenhan, MA Jinji∗, SUN Erchang, GUO Jinyu, YANG Guang, WANG Yuyao. Research on cloud parameter inversion method based on deep learning [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 453-464. |
[8] | HE Juan, ZHANG Hua, ∗, SU Hongjuan, ZHOU Xixun, CHEN Qi, XIE Bing, YOU Ting. Study on long-term change of global spectral surface albedo [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279-293. |
[9] | JIA Hongliang, LUO Jun, XIAO Dongsheng∗. Temporal and Spatial Distribution Characteristics of PM2.5 in Chengdu Area Based on Remote Sensing Data and GWR Model [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(6): 529-540. |
[10] | YANG Guang, MA Jinji, ∗, SUN Erchang, WU Wenhan, GUO Jinyu, LIN Xiwen, . Spatio-Temporal Characteristics of Aerosols in China During 2004–2018 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 443-456. |
[11] | TANG Yan∗, XU Rui , MENG Fanyue. Spatiotemporal Evolution and Prediction of AOD in Typical Urban Agglomerations in Eastern China [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 320-330. |
[12] | WANG Zixiang, LI Zhengqiang, ∗, GUANG Jie, SHE Lu. Study on Parallel Method of Atmospheric Correction for GF-4 Images [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 269-282. |
[13] | . Aerosol Optical Properties in Beijing Based on AERONET [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(1): 18-27. |
[14] | CHEN Jie, LI Zhengqiang∗, CHANG Wenyuan∗, ZHANG Ying, WEI Yuanyuan, XIE Yisong, GE Bangyu, ZHANG Chi, . Impact Evaluation of Aerosol Variational Assimilation Based on Improved GSI System on WRF-Chem PM2.5 Analysis and Forecast [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 321-333. |
[15] | SHI Yiqiang, CHEN Jiongfeng, WANG Jian, HUANG Baoyan, WU Jun, . Spatial and Temporal Characteristics and Correlation of MODIS Aerosol Optical Depth and PM2.5 Concentration Over Xiamen City [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 334-346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||