[1] Sassen K. The polarization lidar technique for cloud research: a review and current assessment [J]. Bull. Am. Meteorol. Soc., 1991, 72(12): 1848-1866.
[2] Uchino O, Tabata I, Kai K J, et al. Polarization properties of middle and high level clouds observed by lidar [J]. J. Meteor. Soc. Japan., 1988, 66: 607-616.
[3] Gobbi G P. Polarization lidar returns from aerosol and thin clouds: a framework for the analysis [J]. Appl. Opt., 1998, 37(24): 5505-5508.
[4] Liu Dong, Qi Fudi, Jin Chuanjia, et al. Polarization lidar observations of cirrus clouds and Asian dust aerosols over Hefei [J]. Chin. J. Atmosph. Sci., 2003, 27(6): 1093-1100(in Chinese).
刘东, 戚福弟, 金传佳, 等. 合肥上空卷云和沙尘气溶胶退偏振比的激光雷达探测 [J]. 大气科学, 2003, 27(6):1093-1100.
[5] Wang Z Z, Chi R L, Liu B, et al. Depolarization properties of cirrus clouds from polarization lidar measurements over Hefei in spring [J]. Chin. Opt. Lett., 2008, 6(4): 235-237.
[6] Scholand R M, Sassen K, Stone R. Observation by lidar of linear depolarization ratios for hydrometeors [J]. J. Appl. Meteor., 1971, 10(5): 1011-1017.
[7] Winker D M, Pelon J R, McCormick M P. The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds [C]. Proc. of SPIE, 2003, 4893: 1-11.
[8] Biele J, Beyerle G, Baumgarten G. Polarization lidar: corrections of instrumental effects [J]. Opt. Express, 2000, 7 (12): 427-435.
[9] Liu Z Y, McGill M, Hu Y X, et al. Validating lidar depolarization calibration using solar radiation scattered by ice clouds [J]. IEEE Geosci. Remote Sensing Lett., 2004, 1(3): 157-161.
[10] Behrendt A, Nakamura T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature [J]. Opt. Express, 2002, 10(16): 805-817.
[11] Liu Dong, Fan Aiyuan, Qi Fudi, et al. Unattended automated and portable Polarization-Mie Lidar and its detecting method: China Patent, 200510038410.6 [P]. 2005-09-28(in Chinese).
刘东, 范爱媛, 戚福弟, 等. 无人值守昼夜兼用的便携式偏振米散射激光雷达及其探测方法: 中国, 200510038410. 6 [P]. 2005-09-28.
[12] McNeil W R, Carswell A I. Lidar polarization studies of the troposphere [J]. Appl.Opt., 1975, 14(9): 2158-2168. [13] Murayama T, Okamoto H, Kaneyasu N, et al. Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles [J]. J. Geophys. Res. Atmosph., 1999, 104(D24): 31781-31792.
[14] Bates D R. Rayleigh scattering by air [J]. Planet. Space Sci., 1984, 32(6): 785-790.
[15] Young A T. Revised depolarization corrections for atmospheric extinction [J]. Appl. Opt., 1980, 19: 3427-3428. [16] Tomasi C, Vitale V, Petkov B, et al. Improved algorithm for calculations of Rayleigh-scattering optical depth in standard atmospheres [J]. Appl. Opt., 2005, 44(16): 3320-3341.
[17] Fernald G F. Analysis of atmospheric lidar observation: some comments [J]. Appl. Opt., 1984, 23(5): 652-653.
[18] Cairo F, Di Donfrancesco G, Adriani A, et al. Comparison of various linear depolarization parameters measured by lidar [J]. Appl. Opt., 1999, 38(21): 4425-4432.
[19] Spinhirne J D, Hansen M Z, Caudill L O. Cloud top remote sensing by airborne lidar [J]. Appl. Opt., 1982, 21(9):1564-1571.
[20] Mcgill M, Hlavka D, Hart W. Cloud physics lidar: instrument description and initial measurement results [J]. Appl. Opt., 2002, 41: 3725-3734. |