[1] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change [M]. 2nd edition, New York: John Wiley & Sons, 2006.
[2] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issures [J]. Atmos. Chem. Phys., 2009, 9(14): 5155-5236.
[3] Guenther A, Hewitt C N, Erickson D, et al. A global model of natural volatile organic compound emissions [J]. J. Geophys. Res., 1995, 100(D5): 8873-8892.
[4] Stroud C, Makar P, Karl T, et al. Role of canopy-scale photochemistry in modifying biogenic-atmosphere exchange of reactive terpene species: results from the CELTIC field study [J]. J. Geophys. Res., 2005, 110(D17): D17303.
[5] Weschler C J, Shields H C. Indoor ozone/terpene reactions as a source of indoor particles [J]. Atmos. Environ., 1999, 33(15): 2301-2312.
[6] Leungsakul S, Jaoui M, Kamens R M. Kinetic mechanism for predicting secondary organic aerosol formation from the reaction of d-limonene with ozone [J]. Environ. Sci. Technol., 2005, 39(24): 9583-9594. [7] Maksymiuk C S, Gayahtri C, Gil R R, et al. Secondary organic aerosol formation from multiphase oxidation of limonene by ozone: mechanistic constraints via two-dimensional heteronuclear NMR spectroscopy [J]. Phys. Chem. Chem. Phys., 2009, 11(36): 7810-7818.
[8] Walser M L, Desyaterik Y, Laskin J, et al. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene [J]. Phys. Chem. Chem. Phys., 2008, 10(7): 1009-1022.
[9] Pan X, Underwood J S, Xing J H, et al. Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry [J]. Atmos. Chem. Phys., 2009, 9(12): 3851-3865.
[10] N?jgaard J K, Bilde M, Stengy C, et al. The effect of nitrogen dioxide on particle formation during ozonolysis of two abundant monoterpenes indoors [J]. Atmos. Environ., 2006, 40(6): 1030-1042.
[11] Zhang J Y, Hartz K E H, Pandis S N, et al. Secondary organic aerosol formation from limonene ozonolysis: homogeneous and heterogeneous influences as a function of NOx [J]. J. Phys. Chem. A., 2006, 110(38): 11053-11063.
[12] Saathoff H, Naumann K H, Moehler O, et al. Temperature dependence of yields of secondary organic aerosols from the ozonolysis of α-pinene and limonene [J]. Atmos. Chem. Phys., 2009, 9(5): 3851-3865.
[13] Jonsson ? M, Hallquist M, Ljungstr?m E. The effect of temperature and water on secondary organic aerosol formation from ozonolysis of limonene, Δ3-carene and α-pinene [J]. Atmos. Chem. Phys., 2008, 8(21): 6541-6549.
[14] Griffin R J, Cocker D R, Flagan R C, et al. Organic aerosol formation from oxidation of biogenic hydrocarbons [J]. J. Geophys. Res., 1999, 104(D3): 3555-3567.
[15] Presto A A, Hartz K E H, Donahue N M. Secondary organic aerosol production from terpene ozonolysis. 1. effect of UV radiation [J]. Environ. Sci. Technol., 2005, 39(18): 7028-7037.
[16] http://www.eurochamp.org/ [OL].
[17] Wang Wenxing, Shu Yonghui, Li Jinhua. Photochemical degradation of PAH_S on smoke particles in atmosphere [J]. China Environmental Science, 1997, 17(2): 97-102(in Chinese).
王文兴, 束用辉, 李金花. 煤烟粒子中PAH_S光化学降解的动力学 [J]. 中国环境科学, 1997, 17(2): 97-102.
[18] Zhang Yuanhang, Shao Kesheng, Tang Xiaoyan. The study of urban photochemical smog pollution in China [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1998, 34(2-3): 392-400(in Chinese). 张远航, 邵可声, 唐孝炎. 中国城市光化学烟雾污染研究 [J]. 北京大学学报(自然科学版), 1998, 34(2-3): 392-400.
[19] Wu Shan, Hao Jiming, Lu Zifeng, et al. Effect of ammonium sulfate aerosol on the photochemical reaction of toluene/NOx/air mixture [J]. Environmental Science, 2007, 28(6): 1183-1187(in Chinese).
武山, 郝吉明, 吕子峰, 等. 硫酸铵气溶胶对甲苯-NOx-空气体系光化学反应的影响 [J]. 环境科学, 2007, 28(6): 1183-1187.
[20] Wu H, Mou Y J. Rate constant and products for the reaction of Cl atom with n-butyaldehyde [J]. Int. J. Chem. Kinet., 2007, 39(3): 168-174.
[21] Du L, Xu Y F, Ge M F, et al. Rate constant for the reaction of ozone with diethyl sulfide [J]. Atmos. Environ., 2007, 41(35): 7434-7439.
[22] Pan G, Hu C J, Wang Z Y, et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2012, 26(2): 189-194.
[23] Liu X Y, Zhang W J, Huang M Q, et al. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene [J]. J. Environ. Sci., 2009, 21(4): 447-451.
[24] Odum J R, Hoffmann T, Bowman F, et al. Gas/particle partitioning and secondary organic aerosol yields [J]. Environ. Sci. Technol., 1996, 30(8): 2580-2585.
[25] Wirtz K, Martin-Reviejo M. Density of secondary organic aerosols [J]. J. Aerosol. Sci., 2003, 34: S223-S224.
[26] Cocker D R, Flagan R C, Seinfeld J H. State-of-the-art chamber facility for studying atmospheric aerosol chemistry [J]. Environ. Sci. Technol., 2001, 35(12): 2594-2601.
[27] Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons [J]. Atmos. Environ., 2003, 37(24): 3413-3424.
[28] Pankow J F. An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol [J]. Atmos. Environ., 1994, 28(2): 189-193. [29] Cao G, Jang M. Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx [J]. Atmospheric Environment, 2007, 41(35): 7603-7613. |