Journal of Atmospheric and Environmental Optics ›› 2019, Vol. 14 ›› Issue (6): 442-454.
Previous Articles Next Articles
Online:
2019-11-28
Published:
2019-11-21
CLC Number:
[1] Root T L, Price J T, Hall K R, et al. Fingerprints of global warming on wild animals and plants [J]. Nature, 2003, 421(6918), 57-60. [2] Zhang H, Zhang R Y, Shi Guangyu. The updated radiative forcing due to CO$_2$ and its effect on global surface temperature change [J]. Advances in Atmospheric Sciences., 2013, 30(4), 1017-1024. [3] Zhang Hua, Xie Bing, Chen Qi, et al. PM2.5 and tropospheric ozone in China and pollutant emission controlling integrated analyses [J]. Progressus Inquisitiones D Mutatione Climatis. 2014, 10(4), 289-296(in Chinese). 张华, 陈琪, 谢冰等.中国的PM2.5和对流层臭氧及污染物排放控制对策的综合分析 [J].气候变化研究进展, 2014, 10(4), 289-296. [4] Zhang H, Xie B, Chen Q, et al. PM2.5 and tropospheric ozone in China and pollutant emission controlling integrated analyses [J]. Advance in Climate Change Research. 2014, 5(3): 136-141. [5] Sj"ogersten S, Black CR, Evers S, et al. Tropical wetlands: a missing link in the global carbon cycle? [J], Global biogeochemical cycles, 2015, 28(12), 1371-1386. [6] Callendar G S. The artificial production of carbon dioxide and its influence on temperature [J]. Quarterly Journal of the Royal Meteorological Society, 1938, 64(275), 223-240. [7] Bacastow R B. The effect of temperature change of the warm surface waters of the oceans on atmospheric CO$_2$ [J]. Global Biogeochemical Cycles, 1996, 10(2), 319-333. [8] IPCC. Climate change 2013: the physical science basis [M]. Cambridge:Cambridge University Press, 2013. [9] Cooper M D A, Estoparagon'es C, Fisher J P, et al. Limited contribution of permafrost carbon to methane release from thawing peatlands [J]. Nature Climate Change, 2017, 7(7). [10] Ye Hong, Li Huijuan. Progress in research on urban soil carbon cycle [J]. Ecologt and Environment, 2009, 18(3), 1134-1138(in Chinese). 叶红, 黎慧娟. 城市土壤碳循环特征研究进展 [J].生态环境学报, 2009, 18(3): 1134-1138. [11] Le Qu'er'e C, Raupach M R, Canadell J G, et al. Trends in the sources and sinks of carbon dioxide [J]. Nature geoscience, 2009. 2(12): 831. [12] World Metrological Association. The state of greenhouse gases in the atmosphere based on global observations through 2016 [M]. Geneva:WMO Greenhouse Gas Bulletin, 2017. [13] Meng Qianwen, Yin Qiu. Remote sensing analysis of multi-years spatial and temporal variation of CO$_2$ in China [J]. Remote Sensing Technology and Application, 2016, 31(2): 203-213(in Chinese). 孟倩文, 尹球. 中国区域CO$_2$多年时空变化的卫星遥感分析[J]. 遥感技术与应用, 2016, 31(2): 203-213. [14] Shi Guangyu, Dai Tie, Xu Na. Latest progress of the study of atmospheric CO$_2$ concentration retrievals from satellite [J]. Advances in Earth Science, 2010, 25(1):7-13(in Chinese). 石广玉, 戴铁, 徐娜. 卫星遥感探测大气CO$_2$浓度研究最新进展 [J]. 地球科学进展, 2010, 25(1): 7-13. [15] Menzel W P, Schmit T J, Zhang P, et al. Satellite based atmospheric infrared sounder development and applications [J]. Bulletin of the American Meteorological Society. 2018, 99(3): 583-603. [16] Barkley M P, Monks P S, Hewitt A J, et al. Assessing the near surface sensitivity of SCIAMACHY atmospheric CO$_2$ retrieved using (FSI) WFM-DOAS [J]. Atmospheric Chemistry & Physics Discussions, 2007, 7(1):3597-3619. [17] Pagano T S, Chahine M T, Olsen E T. Seven years of observations of mid-tropospheric CO$_2$ from the Atmospheric Infrared Sounder [J]. Acta Astronautica, 2011, 69(7): 355-359. [18] Bai Wenguang, Zhang Xingying, Zhang Peng. Temporal and spatial distribution of tropospheric CO$_2$ over China based on satellite observations [J]. Chinese Science Bulletin, 2010. 55(30): 2953-2960(in Chinese). 白文广, 张兴赢, 张鹏. 卫星遥感监测中国地区对流层二氧化碳时空变化特征分析[J]. 科学通报, 2010. 55(30): 2953-2960. [19] Butz A, Guerlet S, Hasekamp O, et al. Toward accurate CO$_2$ and CH$_4$ observations from GOSAT [J]. Geophysical Research Letters, 2011. 38(14): 130-137. [20] Hammerling D M, Michalak A M, Kawa S R. Mapping of CO$_2$ at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2 [J]. Journal of Geophysical Research: Atmospheres, 2012. 117(D6). [21] Yang D, Liu Y, Cai Z, et al. First global carbon dioxide maps produced from Tan Sat measurements [J]. Advances in Atmospheric Sciences, 2018, 35(6):621-623. [22] He Qian, Yu Tao, Cheng Tianhai, et al. Atmospheric carbon dioxide satellite remote sensing retrieval accuracy inspection and spatio-temporal characteristics analysis [J]. Journal of Geo-Information Science, 2012, 14(2): 250-257(in Chinese). 何茜,余涛,程天海等. 大气二氧化碳遥感反演精度检验及时空特征分析[J]. 遥感技术与应用, 2012, 14(2): 250-257. [23] Pagano T S, Olsen E T. Global variability of midtropospheric carbon dioxide as measured by the Atmospheric Infrared Sounder [J]. Journal of Applied Remote Sensing, 2014, 8(1):4480-4494. [24] Tarasova O, Koide H, Dlugokencky E, et al. The state of greenhouse gases in the atmosphere using global observations through 2011 [J]. Egu General Assembly, 2012, 8, 110-112. [25] World Metrological Association. The State of Greenhouse Gases in the Atmosphere Based on Global Observations Through 2004 [M]. Genvea: WMO Greenhouse Gas Bulletin, 2006. [26] British Petroleum Company. BP Statistical Review of World Energy June 2017 [M]. London:BP World Energy Review, 2017. [27] Jenny B, Liem J, vSavrivc B, et al. Interactive video maps: A year in the life of Earth's CO$_2$ [J]. Journal of Maps, 2016, 12(1): 1-7. [28] Pawson S, Gelaro R, Ott L, et al. A Study of the Carbon Cycle Using NASA Observations and the GEOS Model [EB/OL]. https://ntrs.nasa.gov/search.jsp?R=20180000764&qs=N%3D4294966724. 2018. [29] Chen C T A, Jones E P, Lin K. Wintertime total carbon dioxide measurements in the Norwegian and greenland seas [J]. Deep Sea Research Part A Oceanographic Research Papers, 1990, 37(9): 1455-1473. [30] Forkel M, Carvalhais N, R"odenbeck C, et al. Enhanced seasonal CO$_2$ exchange caused by amplified plant productivity in northern ecosystems[C]// EGU General Assembly Conference. EGU General Assembly Conference Abstracts. 2016. [31] Zhou Mandi. CO$_2$ in Mid-troposphere Satellite Remote Sensing Retrieval Accuracy Inspection and the Errors' Analysis [D]. Shanghai: Doctorial Dissertation of East China Normal University. 2013(in Chinese). 周曼蒂. 对流层CO$_2$浓度卫星遥感反演及误差分析 [D]. 上海:华东师范大学博士论文. 2013. [32] Christensen T R, Friborg T, Sommerkorn M, et al. Trace gas exchange in a high-arctic valley: 1. Variations in CO$_2$ and CH$_4$ flux between tundra vegetation types [J]. Global Biogeochemical Cycles, 2000, 14(3): 701-713. [33] Welker J M, Fahnestock J T, Jones M H. Annual CO$_2$ flux in dry and moist arctic tundra: field responses to increases in summer temperatures and winter snow depth [J]. Climatic Change, 2000, 44(1-2): 139-150. [34] Ostendorf B. Modeling the influence of hydrological processes on spatial and temporal patterns of CO$_2$ soil efflux from an arctic tundra catchment [J]. Arctic & Alpine Research, 1996, 28(3):318-327. [35] Li Mingwei. The Study of the Different Atmospheric Carbon Dioxide Concentration and Carbon Sink Between the Northern and Southern Hemispheres [D]. Beijing: Master's Thesis of Tsinghua University, 2013(in Chinese). 李明威. 大气二氧化碳浓度及碳源汇的南北半球差异研究[D]. 北京:清华大学硕士论文, 2013. [36] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO$_2$ [J]. Science, 2004, 305(5682): 367. [37] Department of Energy Statistics, National Bureau of Statistics of China. China Energy Statistical Yearbook 2017[M]. Beijing: China Statistics Press. 2017(in Chinese). 国家统计局能源统计司. 中国能源统计年鉴2017 [M]. 北京:中国统计出版社. 2017. [38] Zhang Li, Lv Bihong, Li Wei. The present situation and characteristic of CO$_2$ emissions in different region of China over the past decade [J]. Journal of Zhejiang University (Science Edition), 2012, 39(5), 552-556(in Chinese). 张莉, 吕碧洪, 李伟. 近10年中国不同区域CO$_2$排放现状和特征 [J].浙江大学学报(理学版), 2012, 39(5), 552-556. [39] Zhang Hongwu, Shi Linyun. The comparative analysis of CO$_2$ emission characteristics of various provinces and regions in China [C]// Annual meeting of the Chinese academy of environmental sciences. 2010(in Chinese). 张宏武, 时临云. 中国各省区CO$_2$排放特征的比较分析[C]// 中国环境科学学会学术年会. 2010. [40] Guo L B, Gifford R M. Soil carbon stocks and land use change: a meta analysis [J]. Global Change Biology, 2002, 8(4), 345-360. [41] Yao Zuoxin, Li Qin, Liu Weiping, et al. Response of seasonal frozen soil to climate change in Taxkorgan River Valley of Xinjiang duing 1960-2015 [J]. Arid Land Geography, 2017, 40(2), 257-265(in Chinese). 姚作新, 李秦, 刘卫平等. 1960-2015年新疆塔什库尔干河谷季节性冻土对气候变化的响应 [J].干旱区地理(汉文版), 2017, 40(2), 257-265. [42] Wang Enchong. Glacier Melting Water Storage on the Tibetan plateau had reduced the tenth in the past 30 years [J]. Pratacultural Science, 2007, (2), 104-104(in Chinese). 王恩重. 青藏高原冰川融化蓄水量近30年减少1/10 [J]. 草业科学, 2007, (2), 104-104. [43] Zhao Yonghua, Zhao Lin, Wu Tianyun, et al. Variation of CO$_2$ Concentration in Active Layer in Beiluhe Permafrost Region of the Tibetan Plateau during Winter and Spring [J]. Journalof Glaciology and Geocryology, 2006, 28(2), 183-190(in Chinese). 赵拥华, 赵林, 武天云等. 冬春季青藏高原北麓河多年冻土活动层中气体CO$_2$浓度分布特征 [J].冰川冻土, 2006, 28(2), 183-190. [44] Nuerpatiman$cdot$Maimaiti, Parhat.Abdulla. The temperature and precipitation changes in tashkurgan county, pamir plateau from 1960 to 2014 [J]. Desert and Oasis Meteorology, 2015, 9(1),54-58(in Chinese). 努尔帕提曼$cdot$买买提热依木, 帕尔哈提·阿不都拉. 帕米尔高原塔什库尔干县1960-2014年气温及降水变化 [J].沙漠与绿洲气象, 2015, 9(1): 54-58. [45] Li Changming. Phylogenetic and functional Diversity of Bacterial Community in Permafrost-Affected Soils in Qinghai-Tibet Plateau [D]. Lanzhou: Master's Thesis of Lanzhou University, 2013(in Chinese). 李昌明. 青藏高原多年冻土区土壤微生物及其与环境关系的研究[D]. 兰州:兰州大学硕士论文, 2012. |
[1] | PAN Yan , LI Xin , LI Zhaozhou , ZHANG Quan , ZHANG Yanna . Automatic measurement method of target reflectivity at Songshan Remote Sensing Calibration Field [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(2): 141-152. |
[2] | SUN Erchang , MA Jinji , WU Wenhan , YANG Guang , GUO Jinyu , . Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 59-72. |
[3] | HUANG Dong , , LI Xin , ZHANG Yanna , ZHANG Yunxiang . Design and test of temperature control system for automatic sun photometer [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 73-81. |
[4] | XU Jian, RAO Lanlan, DOICU Adrian, HUSI Letu∗, QIN Kai∗. An optimized retrieval algorithm of aerosol layer height from hyperspectral satellites using O2-A band [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 630-639. |
[5] | SHEN Yonglin, JIANG Changmin, XIAO Zemin, YAO Ling, QIN Kai∗ (. Remote sensing emission inventory of field-level open biomass burning NOx of China [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 655-669. |
[6] | WANG Xinyuan, SI Fuqi∗, ZHAO Minjie, ZHOU Haijin, JIANG Yu, WANG Shimei. On-Orbit Spectrum Calibration of Spaceborne EMI [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 177-185. |
[7] | TI Rufang∗, HUANG Honglian, LIU Xiao, FAN Yizhe, WANG Jiajia, SUN Xiaobing, HONG Jin. Retrieval of Aerosol Optical Depth Over Parts of China Land Based on Directional Polarimetric Camera [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 239-246. |
[8] | WANG Zixiang, LI Zhengqiang, ∗, GUANG Jie, SHE Lu. Study on Parallel Method of Atmospheric Correction for GF-4 Images [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 269-282. |
[9] | SHI Yiqiang, CHEN Jiongfeng, WANG Jian, HUANG Baoyan, WU Jun, . Spatial and Temporal Characteristics and Correlation of MODIS Aerosol Optical Depth and PM2.5 Concentration Over Xiamen City [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 334-346. |
[10] | Li Jiaxin, Zhao Peng, Fang Wei∗, Song Shangxiang, . Cloud Detection of Multi-Angle Remote Sensing Image Based on Deep Learning [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 380-392. |
[11] | . Abel Transformation of Laser Occultation for Profiling Water Vapor in UTLS [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 180-188. |
[12] | . Progress of Measurement Technology for Marine Water Optics Properties [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 23-39. |
[13] | . Monitoring of Algal Flocculation Using Polarized Light Scattering [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 72-80. |
[14] | XU Quan, HUANG Shuhua, SI Fuqi, HAN Chunhui, ZHANG Shen, LU Yuelin, LIU Wenqing. Design and Implementation of Stepping Motor Control System Based on BM3803 [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 463-473. |
[15] | . Methods of Ocean Subsurface Particulate Backscattering Coefficient Retrieval from CALIOP Measurements [J]. Journal of Atmospheric and Environmental Optics, 2019, 14(5): 367-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||