Journal of Atmospheric and Environmental Optics ›› 2021, Vol. 16 ›› Issue (6): 529-540.
Previous Articles Next Articles
JIA Hongliang, LUO Jun, XIAO Dongsheng∗
Received:
2020-09-21
Revised:
2021-08-26
Online:
2021-11-28
Published:
2021-11-28
Contact:
xiao dongsheng
E-mail:xiaodsxds@163.com
CLC Number:
JIA Hongliang, LUO Jun, XIAO Dongsheng∗. Temporal and Spatial Distribution Characteristics of PM2.5 in Chengdu Area Based on Remote Sensing Data and GWR Model[J]. Journal of Atmospheric and Environmental Optics, 2021, 16(6): 529-540.
[1] | Emili E, Popp C, Petittao M, et al. PM10 remote sensing from geostationary SEVIRI and polar-orbiting MODIS sensors over |
the complex terrain of the European Alpine region [J]. Remote Sensing of Environment, 2010, 114(11): 2485-2499. | |
[2] | Cheng Chunying, Yin Xuebo. Source, composition, formation and hazard of PM2.5 in haze [J]. University Chemistry, 2014, |
29 | (5): 1-6. |
程春英, 尹学博. 雾霾之 PM2.5 的来源、成分、形成及危害 [J]. 大学化学, 2014, 29(5): 1-6. | |
[3] | Suo Danfeng, Zeng Sanwu. Research on the harm of air fine particulate matter PM2.5 to various human systems [J]. Medical |
Information, 2019, 32(18): 32-34. | |
索丹凤, 曾三武. 空气细颗粒物 PM2.5 对人体各系统危害的研究 [J]. 医学信息, 2019, 32(18): 32-34. | |
[4] | Huang Wenxi. PM2.5 Quantitative Retrieval Based on the Remote Sensing and Ground-based Air Quality Measurement Data |
[D] | Wuhan: China University of Geosciences, 2019. |
黄文喜. 基于遥感与地面监测数据的 PM2.5 定量反演研究 [D]. 武汉: 中国地质大学, 2019. | |
[5] | Lu Debin, Mao Wanliu, Yang Dongyang, et al. Analysis on the trend and influencing factors of PM2.5 in China based on |
multi-source remote sensing data [J]. Resources and Environment in the Yangtze Basin, 2019, 28(3): 651-660. | |
卢德彬, 毛婉柳, 杨东阳, 等. 基于多源遥感数据的中国 PM2.5 变化趋势与影响因素分析 [J]. 长江流域资源与环境, 2019, | |
28 | (3): 651-660. |
[6] | Shen Yang, Zhang Lianpeng, Fang Xing, et al. Correlation analysis and annual cycle characteristics of aerosol optical depth |
and PM2.5 concentrations in the Xuzhou City [J]. Earth and Environment, 2019, 47(1): 34-42. | |
沈 扬, 张连蓬, 方 星, 等. 徐州市气溶胶光学厚度与 PM2.5 相关性及年周期特征 [J]. 地球与环境, 2019, 47(1): 34-42. | |
[7] | Li Chengcai, Mao Jietai, Liu Qihan, et al. Application of MODIS satellite remote sensing aerosol products in Beijing air |
pollution research [J]. Science in China, Series D: Earth Sciences, 2005, 35(SUP 1): 177-186. | |
李成才, 毛节泰, 刘启汉, 等. MODIS 卫星遥感气溶胶产品在北京市大气污染研究中的应用 [J]. 中国科学 (D 辑: 地球科 | |
学) | , 2005, 35(增刊 1): 177-186. |
[8] | Yang Lijuan, Xu Hanqiu, Jin Zhifan. Estimation of ground-level PM2.5 concentrations using MODIS satellite data in Fuzhou, |
China [J]. Journal of Remote Sensing, 2018, 22(1): 64-75. | |
杨立娟, 徐涵秋, 金致凡. MODIS 卫星遥感估计福州地区近地面 PM2.5 浓度 [J]. 遥感学报, 2018, 22(1): 64-75. | |
[9] | Qin Wen, Wu Yunxia, Sheng Jie, et al. Study on quantitative inversion MODIS-AOD products and surface atmospheric |
particulate matter concentration in Nanchang city [J]. Guangzhou Chemical Industry, 2016, 44(23): 125-128. | |
秦 文, 武云霞, 盛 寁, 等. 基于 MODIS-AOD 产品的南昌市近地面颗粒物定量反演 [J]. 广州化工, 2016, 44(23): 125-128. | |
[10] | Lin Chuyong, Deng Yujiao, Xu Jianbo, et al. Temporal variation and spatial distribution of aerosol optical depth in Guangdong |
Province based on modis data [J]. Journal of Tropical Meteorology, 2015, 31(6): 821-826. | |
林楚勇, 邓玉娇, 徐剑波, 等. 基于 MODIS 的广东省气溶胶光学厚度时空分布特征分析 [J]. 热带气象学报, 2015, 31(6): | |
82 | 1-826. |
[11] | Ren Yuxuan. Study on Satellite Remote Sensing Inversion Method of Ambient PM2.5 in Chengdu [D]. Chengdu: Southwest |
Jiaotong University, 2018. | |
任昱轩. 成都市近地面 PM2.5 卫星遥感反演方法研究 [D]. 成都: 西南交通大学, 2018. | |
[12] | Hou Aihua, Gao Wei, Wang Zhongting, et al. Estimation of PM2.5 concentration from GF-1 data in Kaifeng City [J]. Remote |
Sensing for Land & Resources, 2017, 29(4): 161-165. | |
侯爱华, 高 伟, 王中挺, 等. 利用高分一号卫星监测开封地区 PM2.5 [J]. 国土资源遥感, 2017, 29(4): 161-165. | |
[13] | Shi Lingzhi, Deng Qihong, Lu Chan, et al. Prediction of PM10 mass concentrations based on BP artificial neural network [J]. |
Journal of Central South University(Science and Technology), 2012, 43(5): 1969-1974. | |
石灵芝, 邓启红, 路 婵, 等. 基于 BP 人工神经网络的大气颗粒物 PM10 质量浓度预测 [J]. 中南大学学报 (自然科学版), | |
20 | 12, 43(5): 1969-1974. |
[14] | Ma Z, Liu Y, Zhao Q, et al. Satellite-derived high resolution PM2.5 concentrations in Yangtze River Delta Region of China |
using improved linear mixed effects model [J]. Atmospheric Environment, 2016, 133: 156-164. | |
[15] | Fu Hongchen, Sun Yanling, Jing Yue. Estimating ground-level PM2.5 concentrations of Xinjiang based on geographically |
weighted regression model [J]. Journal of Tianjin Normal University (Natural Science Edition), 2019, 39(1): 63-70. | |
付宏臣, 孙艳玲, 景 悦. 基于地理加权回归模型的新疆地区 PM2.5 遥感估算 [J]. 天津师范大学学报 (自然科学版), 2019, | |
39 | (1): 63-70. |
[16] | Wu Jiansheng, Wang Xi, Li Jiacheng, et al. Comparison of models on spatial sariation of PM2.5 concentration: A case of |
Beijing-Tianjin-Hebei region [J]. Environmental Science, 2017, 38(6): 2191-2201. | |
吴健生, 王 茜, 李嘉诚, 等. PM2.5 浓度空间分异模拟模型对比: 以京津冀地区为例 [J]. 环境科学, 2017, 38(6): 2191-2201. | |
[17] | Lee H J, Liu Y, Coull B A. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations [J]. Atmospheric |
Chemistry and Physics, 2011, 11(15): 7991-8002. | |
[18] | Fu Hongchen, Sun Yanling, Wang Bin, et al. Estimation of PM2.5 concentration in Beijing-Tianjin-Hebei region based on AOD |
data and GWR model [J]. China Environmental Science, 2019, 39(11): 4530-4537. | |
付宏臣, 孙艳玲, 王 斌, 等. 基于 AOD 数据和 GWR 模型估算京津冀地区 PM2.5 浓度 [J]. 中国环境科学, 2019, 39(11): | |
45 | 30-4537. |
[19] | Chen Hui, Li Qing, Zhang Yuhuan, et al. Estimations of PM2.5 concentrations based on the method of geographically weighted |
regression [J]. Acta Scientiae Circumstantiae, 2016, 36(06): 2142-2151. | |
陈 辉, 厉 青, 张玉环, 等. 基于地理加权模型的我国冬季 PM2.5 遥感估算方法研究 [J]. 环境科学学报, 2016, 36(06): | |
21 | 42-2151. |
[20] | Yi Wei, Yang Dong, Li Xirong. Inversion of PM2.5 concentration in the economic zone of northern Tianshan mountain slope |
based on the GWR model and the temporal and spatial characteristics [J]. Earth and Environment, 2021, 49(1): 51-58. | |
易 唯, 杨 东, 李茜荣. 基于 GWR 模型的天山北坡经济带 PM2.5 浓度反演及时空特征分析 [J]. 地球与环境, 2021, 49(1): | |
51 | -58. |
[21] | Zhang Ying, Wang Shigong, Ni Changjian, et al. Study on an objective synoptic typing method for air pollution weather in |
Chengdu during winter [J]. Environmental Science & Technology, 2020, 43(5): 139-144. | |
张 莹, 王式功, 倪长健, 等. 成都冬季 PM2.5 污染天气形势的客观分型研究 [J]. 环境科学与技术, 2020, 43(5): 139-144. | |
[22] | Li Peirong, Xiao Tiangui. The diffusion and transport of PM2.5 under the polluted weather conditions during autumn and winter |
seasons in Chengdu [J]. China Environmental Science, 2020, 40(1): 63-75. | |
李培荣, 肖天贵. 成都地区秋冬季污染天气形势下 PM2.5 的扩散与输送 [J]. 中国环境科学, 2020, 40(1): 63-75. | |
[23] | Zhang Yang. Inversion of Aerosol Optical Depth Based on the Multi-source Satellite Remote Sensing over Chengdu Region in |
Sichuan Province [D]. Chengdu: Chengdu University of Information Technology, 2015. | |
张 洋. 基于多源卫星遥感的四川成都地区气溶胶光学厚度反演 [D]. 成都: 成都信息工程大学, 2015. | |
[24] | Liang Jia. MODIS Combine Ground Monitoring Station Data to Monitor the Quality Concentration and the Diffusion of |
PM2.5—ShuangLiu District in Chengdu [D]. Chengdu: Chengdu University of Technology, 2018. | |
梁 佳. 基于 MODIS 数据构建成都市双流区 PM2.5 估算模型的研究 [D]. 成都: 成都理工大学, 2018. | |
[25] | Zhang Li, Zeng Zhiyuan. The study and implementation of extraction modis level 1B image data based on a HDF4 file [J]. |
Remote Sensing for Land & Resources, 2004, 16(4): 27-32. | |
张 莉, 曾致远. 基于 HDF4 文件格式的 MODIS L1B 影像数据提取的研究与实现 [J]. 国土资源遥感, 2004, 16(4): 27-32. | |
[26] | Fu Hongchen, Sun Yanling, Chen Li, et al. Temporal and spatial distribution characteristics of PM2.5 and PM10 in Xinjiang |
region in 2016 based on AOD data and GWR model [J]. Acta Scientiae Circumstantiae, 2020, 40(1): 27-35. | |
付宏臣, 孙艳玲, 陈 莉, 等. 基于 AOD 数据与 GWR 模型的 2016 年新疆地区 PM2.5 和 PM10 时空分布特征 [J]. 环境科学 | |
学报, 2020, 40(1): 27-35. | |
[27] | McMillen D P. Geographically weighted regression: The analysis of spatially varying relationships [J]. American Journal of |
Agricultural Economics, 2004, 86(2): 554-556. |
[1] | GUO Tingwei , HUANG Honglian , SUN Xiaobing , LIU Xiao , TI Rufang . Detection and removal of thin clouds in multispectral images of HJ-2A/B satellites [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(4): 383-400. |
[2] | WANG Lijun , ZHOU Yu , WAN Lijuan , CHENG Liangliang. Application of the Bayesian-based big data model in the analysis of the source of air pollution [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 227-234. |
[3] | CAO Yuan , GONG Mingyan , SHEN Fei , MA Jinji , YANG Guang , LIN Xiwen , . Estimation of PM2.5 concentration and analysis of influencing factors in China [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(3): 245-257. |
[4] | HU Yang , GAO Wei , YANG Jie. Evaluation of eco-environmental quality in central urban areas of Tianjin City based on multi-temporal remote sensing images [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(2): 168-180. |
[5] | FAN Xuanshuo , WU Haibin , CHEN Xinbing , SONG Wei . Deep learning architecture based on satellite remote sensing data for estimating ground-level NO2 across Beijing-Tianjin-Hebei Region [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(2): 181-190. |
[6] | SUN Erchang , MA Jinji , WU Wenhan , YANG Guang , GUO Jinyu , . Improvement of PM2.5 predictions via variational assimilation of Himawari-8 satellite AOD product [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 59-72. |
[7] | DAI Liuxin, ZHANG Ying∗, LI Zhengqiang, LOU Sijia. Comparison and historical trend analysis of satellite remote sensing datasets of near-surface PM2.5 mass concentration in China [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 613-629. |
[8] | XU Jian, RAO Lanlan, DOICU Adrian, HUSI Letu∗, QIN Kai∗. An optimized retrieval algorithm of aerosol layer height from hyperspectral satellites using O2-A band [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 630-639. |
[9] | JIA Yizhen, TAO Minghui∗, DING Sijia, LIU Hangyu, ZENG Mingyu, CHEN Liangfu. Spatial and temporal distribution of XCO2 and XCH4 in China based on satellite remote sensing [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(6): 679-692. |
[10] | CHEN Yukuan , , WANG Shuo , XU Xuezhe , ZHAO Weixiong , GAI Yanbo , FANG Bo , ZHANG Weijun , ∗. Variation characteristics of aerosol extinction coefficient in Shouxian, Anhui Province [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 533-541. |
[11] | WANG Jialin, XIONG Wei, LI Dacheng ∗ , WU Jun. Fast identification algorithm of pollution gas by brightness temperature spectrum of weak signal [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 542-549. |
[12] | WU Wenhan, MA Jinji∗, SUN Erchang, GUO Jinyu, YANG Guang, WANG Yuyao. Research on cloud parameter inversion method based on deep learning [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 453-464. |
[13] | YANG Mingliang, ZHU Zongjiu. Simulation analysis of spatial distribution of PM2.5 concentration based on LUR model [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 347-359. |
[14] | HE Juan, ZHANG Hua, ∗, SU Hongjuan, ZHOU Xixun, CHEN Qi, XIE Bing, YOU Ting. Study on long-term change of global spectral surface albedo [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 279-293. |
[15] | XU Zhenyi, WANG Ruibin, KANG Yu, ∗, CAO Yang, ZHANG Cong, WANG Renjun, . Analysis and prediction of main influencing factors in mobile source remote sensing [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 220-229. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||