Journal of Atmospheric and Environmental Optics ›› 2022, Vol. 17 ›› Issue (2): 267-278.
CHEN Biao1, WU Dong1;2∗
Received:
2021-01-02
Revised:
2022-02-26
Online:
2022-03-28
Published:
2022-03-28
Contact:
Biao Chen
E-mail:1113130275@qq.com
CLC Number:
CHEN Biao, WU Dong, ∗. Arctic sea fog detection using CALIOP and MODIS[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267-278.
[1] | Wu D, Hu Y X, Mccormick M P, et al. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations [J]. |
International Journal of Remote Sensing, 2011, 32(5): 1269-1288. | |
[2] | Zhao J C, Wu D, Zhao Y T. A method for sea fog detection using CALIOP data [J]. Periodical of Ocean University of China, |
20 | 17, 47(12): 9-15. |
赵经聪, 吴 东, 赵耀天. 基于 CALIOP 数据的海雾检测方法研究 [J]. 中国海洋大学学报 (自然科学版), 2017, 47(12): | |
9-15. | |
[3] | Gu Y, Li P, Liu J, et al. Analysis on engineering geological survey of Arctic submarine cable routing [J]. Ocean Development |
and Management, 2020, 37(1): 10-14. | |
顾 洋, 李 萍, 刘 杰, 等. 北极海缆路由工程地质勘察问题探析 [J]. 海洋开发与管理. 2020, 37(1): 10-14. | |
[4] | Ellrod G P. Advances in the detection and analysis of fog at night using GOES multispectral infrared imagery [J]. Weather and |
Forecasting, 1995, 10(3): 606-619. | |
[5] | Koracin D, Dorman C E, Lewis J M, ˘ et al. Marine fog: A review [J]. Atmospheric Research, 2014, 143: 142-175. |
[6] | Lee T F, Turk F J, Richardson K. Stratus and fog products using GOES-8-9 3.9 µm data [J]. Weather and Forecasting, 1997, |
12 | (3): 664-677. |
[7] | Zhang S P, Yi L. A comprehensive dynamic threshold algorithm for daytime sea fog retrieval over the Chinese adjacent seas |
[J] | Pure and Applied Geophysics, 2013, 170(11): 1931-1944. |
[8] | Yi L, Li K F, Chen X Y, et al. Arctic fog detection using infrared spectral measurements [J]. Journal of Atmospheric and |
Oceanic Technology, 2019, 36(8): 1643-1656. | |
[9] | Wang Z, Teng J, Cai W, et al. Yellow sea fog extraction method based on GOCI image [J]. Marine Environmental Science, |
20 | 18, 37(6): 941-946. |
王 峥, 滕骏华, 蔡文博, 等. 基于 GOCI 影像的黄海海雾提取方法研究 [J]. 海洋环境科学, 2018, 37(6): 941-946. | |
[10] | Heo K Y, Park S, Ha K. J, et al. Algorithm for sea fog monitoring with the use of information technologies [J]. Meteorological |
Applications, 2014, 2(21): 350-359. | |
[11] | Lee J, Chung C, Ou M. Fog detection using geostationary satellite data: Temporally continuous algorithm [J]. Asia-Pacific |
Journal of Atmospheric Sciences, 2011, 47(2): 113-122. | |
[12] | Yi L, Thies B, Zhang S P, et al. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime |
data as a prerequisite for Yellow Sea fog detection [J]. Remote Sensing, 2016, 8(1): 8. | |
[13] | Yi L, Zhang S P, Thies B, et al. Spatio-temporal detection of fog and low stratus top heights over the Yellow Sea with |
geostationary satellite data as a precondition for ground fog detection—A feasibility study [J]. Atmospheric Research, 2015, | |
15 | 1: 212-223. |
[14] | Bendix J, Thies B, Cermak J, et al. Ground fog detection from space based on MODIS daytime data-A feasibility study [J]. |
Weather and Forecasting, 2005, 20(6): 989-1005. | |
[15] | Marchand R, Ackerman T, Smyth M, et al. A review of cloud top height and optical depth histograms from MISR, ISCCP, and |
MODIS [J]. Journal of Geophysical Research-Atmospheres, 2010, 115(D16): D16206. | |
[16] | Weisz E, Li J, Menzel W P, et al. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals [J]. |
Geophysical Research Letters, 2007, 34(17) : L17811. | |
[17] | Gultepe I, Pagowski M, Reid J. A satellite-based fog detection scheme using screen air temperature [J]. Weather and Forecasting, 2007, 22(3): 444-456. |
[18] | Hakansson N, Adok C, Thoss A, et al. Neural network cloud top pressure and height for MODIS [J]. Atmospheric Measurement Techniques, 2018, 11(5): 3177-3196. |
[19] | Kox S, Bugliaro L, Ostler A. Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing [J]. |
Atmospheric Measurement Techniques, 2014, 7(10): 3233-3246. | |
[20] | Meng H, Yang Z, Guo H T. Research and analysis on cloud top height Inversion technology based on neural network [J]. |
Journal of Jinling Institute of Technology, 2019, 35(2): 34-39.278 大 气 与 环 境 光 学 学 报 17 卷 | |
孟 恒, 杨 忠, 郭洪涛. 基于神经网络的云顶高反演技术研究分析 [J]. 金陵科技学院学报, 2019, 35(2): 34-39. | |
[21] | Daegeun S, Kim J H. A new application of unsupervised learning to nighttime sea fog detection [J]. Asia-Pacific Journal of |
Atmospheric Sciences, 2018, 54(4): 527-544. | |
[22] | Zhu C Y, Wang J H, Liu S W, et al. Sea fog detection using U-Net deep learning model based on MODIS data [J]. 2019 10th |
Workshop On Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, 2019: 1-5. | |
[23] | Liu S, Yi L, Zhang S, P, et al. A study of daytime sea fog retrieval over the Yellow Sea based on fully convolutional networks |
[J] | Transactions of Oceanology and Limnology, 2019, 6: 13-22. |
刘树霄, 衣 立, 张苏平, 等. 基于全卷积神经网络方法的日间黄海海雾卫星反演研究 [J]. 海洋湖沼通报, 2019, 6: 13-22. | |
[24] | Mcgill M J, Vaughan M A, Trepte C R, et al. Airborne validation of spatial properties measured by the CALIPSO lidar [J]. |
Journal of Geophysical Research-Atmospheres, 2007, 112(D20): D20201. | |
[25] | Liu Z. Use of probability distribution functions for discriminating between cloud and aerosol in lidar backscatter data [J]. |
Journal of Geophysical Research, 2004, 109(D15): D15202. | |
[26] | Wu D, Lu B, Zhang T C, et al. A method of detecting sea fogs using CALIOP data and its application to improve MODIS-based |
sea fog detection [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 153: 88-94. | |
[27] | Wei S X. Application of CALIOP in MODIS Based Sea Fog Detection Abstract [D]. Qingdao: Ocean University of China, |
2013. | |
魏书晓. 星载激光雷达在基于 MODIS 海雾检测中的应用 [D]. 青岛: 中国海洋大学, 2013. | |
[28] | Zhang P, Wu D. Daytime sea fog detection method using Himawari-8 data [J]. Journal of Atmospheric and Environmental |
Optics, 2019, 14(3): 211-220. | |
张 培, 吴 东. 基于 Himawari-8 数据的日间海雾检测方法 [J]. 大气与环境光学学报, 2019, 14(3): 211-220. | |
[29] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [J]. IEEE Conference on Computer Vision |
and Pattern Recognition, 2016: 770-778. | |
[30] | Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]. In |
Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015: 448-456. |
[1] | SHI Yue, XIE Chen-Bo, TAN Min, WANG Bang-Xin, WU De-Cheng, LIU Dong, WANG Ying-Jian. Analysis of Error Sources on Water Vapour Observed by Raman Lidar [J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3): 170-177. |
[2] | LIU Xi-Chuan, GAO Tai-Chang, LIU Zhi-Tian. Effect of Atmospheric Aerosols on Laser Transmission Attenuation [J]. Journal of Atmospheric and Environmental Optics, 2012, (3): 181-190. |
[3] | WANG Zhen-Zhu, LIU Bo, WANG Bang-Xin, LIU Dong. Experimental Determination of the Calibration Factor of Polarization-Mie Lidar [J]. Journal of Atmospheric and Environmental Optics, 2009, 4(6): 414-420. |
[4] | ZHAO Nan-Jing, LIU Jian-Guo, LIU Wen-Qing, LU Yi-Huai, DONG Yun-Sheng. Analysis on the Atmosphere Optical Characteristics of Beijing Olympic Game by Raman Lidar [J]. Journal of Atmospheric and Environmental Optics, 2009, 4(5): 321-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||