[1] |
Wen J P, Lan J, Liu F. Experiment on objective forecast methods for the low visibility of Guangzhou Baiyun Airport [J].
|
|
Advances in Meteorological Science and Technology, 2021, 11(2): 176-180.
|
|
文俊鹏, 蓝 静, 刘 峰. 广州白云机场低能见度客观预报方法试验 [J]. 气象科技进展, 2021, 11(2): 176-180.
|
[2] |
Abdellaoui I A, Mehrkanoon S. Deep multi-stations weather forecasting: Explainable recurrent convolutional neural networks
|
|
[EB/OL]. https://arxiv.org/abs/2009.11239.
|
[3] |
Su J X, Wang S T, Chen H M, et al. Atmospheric visibility forcast based on GA-BP neural network model [J]. Computer
|
|
Knowledge and Technology, 2020, 16(18): 19-21.
|
|
苏靖晰, 王圣堂, 陈红敏, 等. 基于GA-BP神经网络模型的大气能见度预测 [J]. 电脑知识与技术, 2020, 16(18): 19-21.
|
[4] |
Shi X J, Chen Z R, Wang H, et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting
|
[C] |
Proceedings of the 28th International Conference on Neural Information Processing Systems, December 7, 2015,
|
|
Montreal, Canada. MIT Press, 2015: 802-810.
|
[5] |
Guo H Y, Chen M X, Han L, et al. High resolution nowcasting experiment of severe convection based on deep learning [J].
|
|
Acta Meteorologica Sinica, 2019, 77(4): 715-727.
|
|
郭瀚阳, 陈明轩, 韩 雷, 等. 基于深度学习的强对流高分辨率临近预报试验 [J]. 气象学报, 2019, 77(4): 715-727.
|
[6] |
Niu D, Huang J H, Zang Z L, et al. Two-stage spatiotemporal context refinement network for precipitation nowcasting [J].
|
|
Remote Sensing, 2021, 13(21): 4285.
|
[7] |
Xu Z R, Wang Y B, Long M S, et al. PredCNN: Predictive learning with cascade convolutions [C]. Proceedings of the 27th
|
|
International Joint Conference on Artificial Intelligence. July 13-19, 2018, Stockholm, Sweden. AAAI Press, 2018: 2940-2947.
|
[8] |
Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors [J]. Nature, 1986, 323(6088):
|
53 |
3-536.
|
[9] |
Hochreiter S, Schmidhuber J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780.
|
[10] |
Jiang L, Wang B S, Hong L, et al. Airport visibility prediction based on CNN deep learning model [J]. China Computer &
|
|
Communication, 2020, 32(23): 43-46.
|
|
江 亮, 王保升, 洪 磊, 等. 基于CNN深度学习模型的机场能见度预测 [J]. 信息与电脑, 2020, 32(23): 43-46.
|
[11] |
Deng T. Airport Visibility Prediction Based on LSTM Neural Network [D]. Jinan: Shandong University, 2019.
|
|
邓 拓. 基于LSTM神经网络的机场能见度预测 [D]. 济南: 山东大学, 2019.
|
[12] |
Wang Y B, Long M S, Wang J M, et al. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal
|
|
LSTMs [C]. Proceedings of the 31st International Conference on Neural Information Processing Systems. December 4-9, 2017,
|
|
Long Beach, California, USA. New York: ACM, 2017: 879-888.
|
[13] |
LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE,
|
19 |
98, 86(11): 2278-2324.
|
[14] |
Oh J, Guo X, Lee H, et al. Action-conditional video prediction using deep networks in Atari Games [C]. Proceedings of the
|
28 |
th International Conference on Neural Information Processing Systems. December 7, 2015, Montreal, Canada, MIT Press,
|
20 |
15: 2863-2871.
|
[15] |
Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE
|
|
Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2004, 13(4): 600-612.
|
[16] |
Zhang R, Isola P, Efros A A, et al. The unreasonable effectiveness of deep features as a perceptual metric [C]. 2018 IEEE/CVF
|
|
Conference on Computer Vision and Pattern Recognition. June 18-23, 2018, Salt Lake City, UT, USA. IEEE, 2018: 586-595.
|