Journal of Atmospheric and Environmental Optics ›› 2023, Vol. 18 ›› Issue (5): 494-502.
TIAN Xing 1, 2, 3, ZHU Lewen 2, 3, LI Long 1, 2, 3, HUA Zisen 1, 2, 3, CAO Yanan 1, CHENG Gang 1*
Received:
2022-07-31
Revised:
2022-09-14
Online:
2023-09-28
Published:
2023-10-11
Contact:
Gang -Cheng
E-mail:chgmech@mail.ustc.edu.cn
CLC Number:
TIAN Xing , , , ZHU Lewen , , LI Long , , , HUA Zisen , , , CAO Yanan , CHENG Gang . Calibration of cavity mirror reflectivity in off-axis integrated cavity output spectroscopy based on radio frequency noise sources[J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 494-502.
[1] | Wilkerson J, Sayres D S, Smith J B, et al. In situ observations of stratospheric HCl using three-mirror integrated cavity output |
spectroscopy [J]. Atmospheric Measurement Techniques, 2021, 14(5): 3597-3613. | |
[2] | He Q X, Zheng C T, Zheng K Y, et al. Off-axis integrated cavity output spectroscopy for real-time methane measurements with |
an integrated wavelength-tunable light source [J]. Infrared Physics & Technology, 2021, 115: 103705. | |
[3] | Zhou J C, Zhao W X, Zhang Y, et al. Amplitude-modulated cavity-enhanced absorption spectroscopy with phase-sensitive |
detection: A new approach applied to the fast and sensitive detection of NO2 [J]. Analytical Chemistry, 2022, 94(7): 3368– | |
3375. | |
[4] | Reynard L M, Wong W W, Noreen T. Accuracy and practical considerations for doubly labeled water analysis in nutrition |
studies using a laser-based isotope instrument (off-axis integrated cavity output spectroscopy) [J]. The Journal of Nutrition, | |
20 | 22, 152(1): 78-85. |
[5] | Wang X, Jansen H G, Duin H, et al. Measurement of δ18O and δ2H of water and ethanol in wine by Off-Axis Integrated Cavity |
Output Spectroscopy and Isotope Ratio Mass Spectrometry [J]. European Food Research and Technology, 2021, 247(8): 1899- | |
1912. | |
[6] | Pal M, Bhattacharya S, Maity A, et al. Exploring triple-isotopic signatures of water in human exhaled breath, gastric fluid, and |
drinking water using integrated cavity output spectroscopy [J]. Analytical Chemistry, 2020, 92(8): 5717-5723. | |
[7] | Fourel F, Lécuyer C, Jame P, et al. Simultaneous δ2H and δ18O analyses of water inclusions in halite with off-axis integrated |
cavity output spectroscopy [J]. Journal of Mass Spectrometry, 2020, 55(10): e4615. | |
[8] | Wang D, Xie P H, Hu R Z, et al. Progress of measurement of atmospheric NO3 radicals [J]. Journal of Atmospheric and |
Environmental Optics, 2015, 10(2): 102-116. | |
王 丹, 谢品华, 胡仁志, 等. 大气环境NO3自由基探测技术研究进展 [J]. 大气与环境光学学报, 2015, 10(2): 102-116. | |
[9] | Gupta A, Singh P J, Gaikwad D Y, et al. Instrumentation and signal processing for the detection of heavy water using off axisintegrated |
cavity output spectroscopy technique [J]. Review of Scientific Instruments, 2018, 89(2): 023110. | |
[10] | Dyroff C. Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy [J]. Optics Letters, 2011, 36(7): 1110. |
[11] | Gong Y, Li B, Han Y. Optical feedback cavity ring-down technique for accurate measurement of ultra-high reflectivity [J]. |
Applied Physics B, 2008, 93(2): 355-360. | |
[12] | Varma R M, Venables D S, Ruth A A, et al. Long optical cavities for open-path monitoring of atmospheric trace gases and |
aerosol extinction [J]. Applied Optics, 2009, 48(4): B159-B171. | |
[13] | Washenfelder R A, Langford A O, Fuchs H, et al. Measurement of glyoxal using an incoherent broadband cavity enhanced |
absorption spectrometer [J]. Atmospheric Chemistry and Physics, 2008, 8(24): 7779-7793. | |
[14] | Tian X, Cao Y, Wang J J, et al. High sensitivity detection of two-component CH4/H2O based on of f-axis cavity enhanced |
absorption spectroscopy [J]. Spectroscopy and Spectral Analysis, 2019, 39(10): 3078-3083. | |
田 兴, 曹 渊, 王静静, 等. 基于离轴腔增强吸收光谱双组分CH4/H2O高灵敏度探测研究 [J]. 光谱学与光谱分析, 2019, 39 | |
(10) | : 3078-3083. |
[15] | Wu L Y, Gao G Z, Liu X, et al. Study on the calibration of reflectivity of the cavity mirrors used in cavity enhanced absorption |
spectroscopy [J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2945-2949. | |
吴陆益, 高光珍, 刘 新, 等. 腔增强吸收光谱技术中的腔镜反射率标定方法研究 [J]. 光谱学与光谱分析, 2021, 41(9): 2945- | |
2949. | |
[16] | Li Z B, Ma H L, Cao Z S, et al. High-sensitive off-axis integrated cavity output spectroscopy and its measurement of ambient |
CO2 at 2 μm [J]. Acta Physica Sinica, 2016, 65(5): 61-67. | |
李志彬, 马宏亮, 曹振松, 等. 2 μm波段高灵敏度离轴积分腔装置实际大气CO2测量 [J]. 物理学报, 2016, 65(5): 61-67. | |
[17] | Mikhailenko S N, Kassi S, Mondelain D, et al. A spectroscopic database for water vapor between 5850 and 8340 cm-1 [J]. |
Journal of Quantitative Spectroscopy Radiative Transfer, 2016, 179: 198-216. | |
[18] | Nikitin A V, Lyulin O M, Mikhailenko S N, et al. GOSAT-2009 methane spectral line list in the 5550-6236 cm-1 range [J]. |
Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2211-2224. | |
[19] | Qi R B, He S K, Li X T, et al. Simulation of TDLAS direct absorption based on HITRAN database [J]. Spectroscopy and |
Spectral Analysis, 2015, 35(1): 172-177. | |
齐汝宾, 赫树开, 李新田, 等. 基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究 [J]. 光谱学与光谱分析, 2015, | |
35 | (1): 172-177. |
[1] | FENG Shiling, CUI Qi, GUO Xinqian, QIU Xuanbing, GUO Guqing, HE Xiaohu, LI Chuanliang∗. Optical fringes removal in TDLAS based on wavelet denoising [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(3): 328-335. |
[2] | CAO Zihao, ZENG Yi∗, LU Xiaofeng, LIAO Jie, YANG Dongshang, CHANG Zhen, SI Fuqi, XI Liang, . Software development and data inversion for imaging differential absorption spectroscopy technology [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 249-257. |
[3] | LIU Qiangqiang, ZHU Hongli, GUO Guqing, WANG Zeyu, FENG Shiling, QIU Xuanbing, HE QiuSheng, LI Chuanliang∗. Simultaneous Detection of SO2 and SO3 Based on Mid-IR Quantum Cascade Laser System [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 424-431. |
[4] | XIAO Yu, HUANG Liwen, TANG Bin∗, XIAO Qisen, ZHAO Mingfu, LI Fengxiao. Denoising of Water Quality Spectral Data by Optimizing Wavelet Threshold Based on Genetic Algorithm [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 432-442. |
[5] | QIAN Yuanyuan, SI Fuqi, LUO Yuhan, ZHOU Haijin, YANG Dongshang, YANG Taiping, WANG Yu∗. Retrieval of Antarctic Total Ozone Column From EMI [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 215-222. |
[6] | YE Hanhan, WANG Xianhua∗, WU Shichao, LI Chao, LI Zhiwei, SHI Hailiang, XIONG Wei. Atmospheric CO2 Retrieval Method for Satellite Observations of Greenhouse Gases Monitoring Instrument on GF-5 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 231-238. |
[7] | QIAO Rui, QIE Lili∗, XU Hua, LI Zhengqiang, ∗, ZHU Sifeng, XIE Yisong, HONG Jin, DAI Haishan, MA Jinji. Retrieval of Cloud Top Pressure in Oxygen A-band Based on Data From DPC Onboard GF-5 Satellite [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(3): 256-268. |
[8] | GUO Yingying, QI Hexiang, LI Suwen∗, MOU Fusheng∗. MAX-DOAS Observation of NO2 Vertical Column Density in Huaibei Area [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(2): 107-116. |
[9] | XU Bo, YE Xiaoxin, ZHANG Yi∗, YANG Xiaolong, LI Fadi. Emission Characteristics of VOCs from Urban Catering Using Portable FTIR Technology [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(5): 357-364. |
[10] | . Dynamic Release Correlation Between Extracellular Organic Components and Microcystins MC-LR Based on Three-Dimensional Fluorescence Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(4): 285-295. |
[11] | . Determination of Trace Elements in Three Cold Medicine Tablets by Laser-Induced Breakdown Spectroscopy [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(4): 305-313. |
[12] | . A Detection Method of SO2 Concentration Based on DBN and ELM [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 207-216. |
[13] | . Variation of NO2 in Winter in Huaibei Based on Ground-Based MAX-DOAS Observation [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(3): 217-223. |
[14] | . Effect of Sample Temperature on Radiation Characteristics of Laser-Induced Cu Plasma [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(2): 110-116. |
[15] | . Research Progress and Prospect of Laser Raman Spectroscopy for In-situ Detection in Deep Ocean [J]. Journal of Atmospheric and Environmental Optics, 2020, 15(1): 2-12. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 296
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 200
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||