Journal of Atmospheric and Environmental Optics ›› 2024, Vol. 19 ›› Issue (1): 22-37.doi: 10.3969/j.issn.1673-6141.2024.01.002
Previous Articles Next Articles
GU Taofeng 1, YUE Haiyan 2*, WANG Sihua 3, WU Guangsheng 1, FENG Houwen 4, TANG Ziheng 5, ZHUANG Peng 5,6,7, KANG Baorong 5, XIE Chenbo 5,6,7
Received:
2022-05-13
Revised:
2022-06-29
Online:
2023-11-28
Published:
2024-02-06
CLC Number:
GU Taofeng , YUE Haiyan , WANG Sihua , WU Guangsheng , FENG Houwen , TANG Ziheng , ZHUANG Peng , KANG Baorong , XIE Chenbo , . A coherent wind lidar based on Doppler principle and its field application[J]. Journal of Atmospheric and Environmental Optics, 2024, 19(1): 22-37.
[1] | Bai B, Wu Q R, Zhou X Y . Discussion on the application of lidar technology in atmospheric environment monitoring [J]. |
Resources Economization & Environmental Protection, 2021(9): 56-57. | |
白 彬, 吴庆瑞, 周轩宇. 浅谈激光雷达技术在大气环境监测中的应用 [J]. 资源节约与环保, 2021(9): 56-57. | |
[2] | Fu J, Li J, Wu Q. Application and prospect of Dopplar lidar in the wind field observation [J]. Acta Aerodynamica Sinica, 2021, |
39 | (4): 172-179. |
傅 军, 李 洁, 吴 强. 激光测风雷达在风场观测领域的应用及展望 [J]. 空气动力学学报, 2021, 39(4): 172-179. | |
[3] | Imaki M, Kobayashi T. Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical |
properties [J]. Applied Optics, 2005, 44(28): 6023-6030. | |
[4] | Liu Z S, Chen W B, Hair J W, et al. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for |
atmospheric wind profiling [J]. Optics & Photonics, 1996, 2833: 128-135. | |
[5] | Wang L, Chen K, Chen X, et al. Calibration of frequency discriminator and application for Doppler lidar based on fiber Mach- |
Zehnder interferometer [J]. Acta Photonica Sinica, 2019, 48(2): 201003. | |
[6] | Wu S H, Yin J P, Liu B Y, et al. Coherent Doppler lidar to investigate wind turbulence [J]. SPIE Newsroom, 2014: 1-3. |
[7] | Wu S H, Yin J P, Liu B Y, et al. Characterization of turbulent wake of wind turbine by coherent Doppler lidar [C]. SPIE |
Proceedings, Lidar Remote Sensing for Environmental Monitoring XIV. Beijing, China. SPIE, 2014. | |
[8] | Xia H Y, Sun D S, Shen F H, et al. Direct detection Doppler wind lidar with twin-channel Fabry-Perot interferometer [J]. |
Infrared and Laser Engineering, 2006, 35(z3): 273-278. | |
夏海云, 孙东松, 沈法华, 等. 基于双F-P 标准具的直接探测测风激光雷达 [J]. 红外与激光工程, 2006, 35(z3): 273-278. | |
[9] | Pearson G, Davies F, Collier C. Remote sensing of the tropical rain forest boundary layer using pulsed Doppler lidar [J]. |
Atmospheric Chemistry and Physics, 2010, 10(201): 5891-5901. | |
[10] | Gao Y, Liu B L, Xu A R, et al. Research and application of wind acoustic radar technology in wind speed measurement [J]. |
Electronic Design Engineering, 2021, 29(19): 126-131. | |
高 阳, 刘宝良, 许傲然, 等. 测风声雷达技术在风速测量中的研究与应用 [J]. 电子设计工程, 2021, 29(19): 126-131. | |
[11] | Zuo J H, Jia Y D, Zhang X Q, et al. Frequency estimation algorithm of coherent Doppler wind lidar [J]. Laser & Infrared, |
20 | 21, 51(5): 554-558. |
左金辉, 贾豫东, 张晓青, 等. 相干多普勒测风激光雷达的频率估计算法 [J]. 激光与红外, 2021, 51(5): 554-558. | |
[12] | Dai Y J. Laser Radar Technology [M]. Beijing: Publishing House of Electronics Industry, 2010: 191-192. |
戴永江. 激光雷达技术 [M]. 北京: 电子工业出版社, 2010: 191-192. | |
[13] | Zheng T, Wei F, Meng F, et al. Research on technology of 1550 nm all-fiber continuous wave coherent Doppler wind lidar [J]. |
E3S Web of Conferences, 2021(261): 01038. | |
[14] | Wang G N, Liu B Y, Feng C Z, et al. Data quality control method for VAD wind field retrieval based on coherent wind lidar |
[J] | Infrared and Laser Engineering, 2018, 47(2): 147-154. |
王贵宁, 刘秉义, 冯长中, 等. 相干测风激光雷达VAD风场反演的数据质量控制方法 [J]. 红外与激光工程, 2018, 47(2): | |
14 | 7-154. . |
[15] | Jia X D. Development of 1.55 μm Coherent Wind Lidar Prototype [D]. Hefei: University of Science and Technology of China, |
2015. | |
贾晓东. 1.55 μm相干测风激光雷达样机的研制 [D]. 合肥: 中国科学技术大学, 2015. | |
[16] | Chen Z. Research on All-fiber Coherent Wind LIDAR [D]. Qingdao: Ocean University of China, 2016. |
陈 震. 全光纤相干测风激光雷达研究 [D]. 青岛: 中国海洋大学, 2016. | |
[17] | Wang C. 1.5 μm Wavelength All-fiber Multifunctional Coherent Doppler Wind Lidar [D]. Hefei: University of Science and |
Technology of China, 2019. | |
王 冲. 1.5 μm波长全光纤多功能相干多普勒测风激光雷达 [D]. 合肥: 中国科学技术大学, 2019. | |
[18] | Punchalard R, Lorsawatsiri A, Loetwassana W, et al. Direct frequency estimation based adaptive algorithm for a second-order |
adaptive FIR notch filter [J]. Signal Processing, 2008, 88(2): 315-325. | |
[19] | Abeysekera S S. Performance of pulse-pair method of Doppler estimation [J]. IEEE Transactions on Aerospace and Electronic |
Systems, 1998, 34(2): 520-531. | |
[20] | Frehlich R. Performance of maximum likelihood estimators of mean power and Doppler velocity with A priori knowledge of |
spectral width [J]. Journal of Atmospheric and Oceanic Technology, 1999, 16(11): 1702-1709. | |
[21] | Hardesty R M. Performance of a discrete spectral peak frequency estimator for Doppler wind velocity measurements [J]. IEEE |
Transactions on Geoscience and Remote Sensing, 1986, GE-24(5): 777-783. | |
[22] | Jing X M. Performance Simulation of Laser Coherent Wind Measurement Technology [D]. Hefei: University of Science and |
Technology of China, 2019. | |
金效梅. 激光相干测风技术的性能仿真研究 [D]. 合肥: 中国科学技术大学, 2019. | |
[23] | Chu Y F, Liu D, Wang Z Z, et al. Basic principle and technical progress of Doppler wind lidar [J]. Chinese Journal of |
Quantum Electronics, 2020, 37(5): 580-600. | |
储玉飞, 刘 东, 王珍珠, 等. 多普勒测风激光雷达的基本原理与技术进展 [J]. 量子电子学报, 2020, 37(5): 580-600. | |
[24] | Yang Y J, Yim S H L, Haywood J, et al. Characteristics of heavy particulate matter pollution events over Hong Kong and their |
relationships with vertical wind profiles using high-time-resolution Doppler lidar measurements [J]. Journal of Geophysical | |
Research: Atmospheres, 2019, 124(16): 9609-9623. |
[1] | YE Xiaoxin , XU Bo , ZHANG Yi , QIAN Chenchen , SHAO Wei . Spatial and temporal distribution of typical dust pollution process in Taixing City in spring 2021 [J]. Journal of Atmospheric and Environmental Optics, 2024, 19(2): 210-220. |
[2] | MAO Minjuan , LIU Houtong , DENG Fangping , DONG Yilei . Lidar observation of pollutant transport and deposition in high impact haze weather [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(6): 541-552. |
[3] | LIU Yuli , WANG Yuru , XIE Chenbo . Investigation of atmospheric refractive modification based on rotational Raman lidar [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(5): 426-433. |
[4] | CHEN Xiaomin , ZHANG Hongwei , SUN Kangwen , WU Songhua , . Inversion methods of slant turbulence parameters based on coherent Doppler lidar [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 1-13. |
[5] | WANG Xijin , XU Qingshan , FAN Chuanyu , CHENG Chen , QI Peng , XU Chidong . Lidar detection of diurnal variation of whole atmosphere aerosol optical depth [J]. Journal of Atmospheric and Environmental Optics, 2023, 18(1): 14-24. |
[6] | LI Lin , , ZHANG Zhiguo , DU Chuanyao , WEI Tao , YU Liping , FAN Xuebo ∗. Inter-comparison of wind measurements between Doppler wind lidar and L-band radiosonde [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(5): 494-505. |
[7] | CUI Tong, CHEN Xiangcheng, DAI Guangyao, ZHANG Hongwei, WANG Qichao, WU Songhua, ∗. Design and experiment of varifocal CW-wind lidar with high resolution [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 393-408. |
[8] | CAI Zhenfeng, LI Ding∗, HUANG Haihong. Analysis of impact of dust transport on aerosol evolution in Xuzhou region in spring 2021 [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 409-419. |
[9] | GUO Hang, SHAO Hui∗, CHEN Jie, HE Zixin, CAO Zheng, WANG Huimin, YAN Pu. Spectral characteristics analysis of dust retention leaves based on hyperspectral Lidar [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 420-428. |
[10] | FENG Pan∗, ZHANG Zhanye, DING Hongbo, . Design and fabrication of control circuit for lidar PMT detection module [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(4): 465-475. |
[11] | CHEN Biao, WU Dong, ∗. Arctic sea fog detection using CALIOP and MODIS [J]. Journal of Atmospheric and Environmental Optics, 2022, 17(2): 267-278. |
[12] | LIU Jiaxin, YUN Long, SHAO Shiyong, CHENG Xueling, SONG Xiaoquan, ∗. Observation of Turbulence Using Doppler Wind Lidar in Shenzhen [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 383-391. |
[13] | WANG Lina, YANG Lili, ∗, YANG Yanping, WANG Jing, TAO Huijie, BI Jianrong. Comprehensive Analysis of a Sandstorm in Northwest China Based on Multiple Data [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(5): 392-403. |
[14] | YIN Zhenping, YI Fan, ∗, WANG Wei, HE Yun, LIU Fuchao, ZHANG Yunpeng, YU Changming, . Investigation of Entrainment of Transported Dust into Local Planetary Boundary Layer with Polarization Lidar [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299-306. |
[15] | ZHA Shuping, LI Xinyu, ZHANG Dong, WANG Wenjing∗, DONG Yan, HU Xiufang. Analysis of Typical Air Pollution Event in Wuhu During Spring Festival in 2020 [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(2): 127-137. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 301
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 414
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||