大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (2): 123-133.doi: 10.3969/j.issn.1673-6141.2025.02.001

• 大气光学 • 上一篇    下一篇

532 nm偏振激光雷达互比对实验及结果分析

步志超 1, 殷振平 2, 毛松 3, 王龙龙 4*, 王安宙 2, 张江涛 1, 赵兵 2, 易洋 2, 陈玉宝 1, 王宣 2   

  1. 1 中国气象局气象探测中心雷达运控室, 北京 100081; 2 武汉大学遥感信息工程学院, 湖北 武汉 430079; 3 西南技术物理研究所, 四川 成都 610041; 4 浙江师范大学杭州高等研究院, 浙江 杭州 311231
  • 收稿日期:2022-09-30 修回日期:2022-11-22 出版日期:2025-03-28 发布日期:2025-03-24
  • 通讯作者: E-mail: longlong.wang@zjnu.edu.cn E-mail:longlong.wang@whu.edu.cn
  • 作者简介:步志超 (1985- ), 女, 高级工程师, 主要从事测风激光雷达方面的研究。E-mail: buzhichao@163.com
  • 基金资助:
    国家自然科学基金 (62105248, 62005201, 62275202, 42205130)

Intercomparisons of 532 nm polarization lidar and result analysis

BU Zhichao 1, YIN Zhenping 2, MAO Song 3, WANG Longlong 4*, WANG Anzhou 2, ZHANG Jiangtao 1, ZHAO Bing 2, YI Yang 2, CHEN Yubao 1, WANG Xuan 2   

  1. 1 Meteorological Observation Center, China Meteorological Administration, Beijing 100081, China; 2 School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China; 3 Southwest Institute of Technical Physics, Chengdu 610041, China; 4 Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
  • Received:2022-09-30 Revised:2022-11-22 Online:2025-03-28 Published:2025-03-24
  • Contact: Longlong Wang E-mail:longlong.wang@whu.edu.cn

摘要: 针对我国超大城市气溶胶激光雷达网的发展, 借鉴欧洲气溶胶激光雷达网 (EARLINET) 的组网标定策略, 开 展气溶胶激光雷达组网标定方法和定量化方法的持续研究与攻关。2021 年9 月, 在北京南郊观象台对不同单位研制 的6 台532 nm波段的偏振激光雷达进行自比对/互比对标定和定量化研究。通过对激光雷达的光学几何校准、暗噪声、 瑞利拟合和有效探测距离等关键性能自检查标定后, 进行了与参考激光雷达的互对比观测标定实验, 并利用统计分 析系统偏差和标准偏差的策略对参与标定的激光雷达偏振性能进行了质量评估。结果表明, 完成自标定测试后的 532 nm激光雷达, 其水平偏振信号P在0.5~2 km高度范围内, 平均相对偏差可控制在10%之内, 在2~5 km高度范围 内,可控制在20%之内; 垂直偏振信号S 具有较大差异 (> 50%)。整体距离平方矫正信号的相对偏差传递到后向散射 系数后, 其平均相对偏差在0.5~2 km高度范围内可控制在10%之内; 在2~5 km高度范围内, 可控制在20%之内。该 种自标定以及与参考激光雷达对比的方法有助于对我国532 nm偏振激光雷达的观测性能进行定量评估, 并作为常规 化质控手段用于提升大气气溶胶探测激光雷达网信号产品的一致性和反演产品的精度, 为大气气溶胶探测激光雷达 进入定量化组网观测奠定基础。

关键词: 偏振激光雷达, 气溶胶, 组网标定, 互对比

Abstract: In view of the development of aerosol lidar network in megacities in China, the calibration methods and quantitative methods of aerosol lidar network are continuously studied and solved by referring
to the calibration strategy of the European Aerosol Research Lidar Network (EARLINET). In September
2021, a self-calibration/intercomparison and quantification study was carried out for six 532 nm
polarization lidars developed by different units at the Southern Suburb Observatory of Beijing. After selfcalibration
of the key performance of the lidars, such as optical geometry calibration, dark noise, Rayleigh
fit and effective detection range, the intercomparison observations with the reference lidar were carried out,
and the quality evaluation of polarization performance of the lidars to be calibrated was carried out by
using the strategy of statistical analysis of system deviation and standard deviation. The results show that
the averaged relative deviation of horizontal polarization signal P of 532 nm lidars after self-calibration can
be controlled within 10% in the height range of 0.5 – 2 km, and within 20% in the height range of 2 –
5 km. While the original signal of vertical polarization S shows a big difference of over 50%. After being
transferred to the backscattering coefficient, the mean relative deviation and standard deviation can be
controlled within 10% in the height range of 0.5–2 km, and within 20% in the height range of 2–5 km. The
method of self calibration and intercomparison with the reference lidar is helpful to quantitatively evaluate
the observation performance of 532 nm polarization lidar in China, and also can be used as a routine
quality control method to improve the consistency of the signal products of atmospheric lidar network and
the accuracy of the retrieval products, laying the foundation for atmospheric aerosol lidar to enter the
quantitative network observation.

Key words: polarization lidar, aerosol, networking calibration, intercomparisons

中图分类号: