[1] |
Quijano A L, Sokolik I N, Toon O B. Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric
|
|
conditions [J]. Journal of Geophysical Research-Atmospheres, 2000, 105(D10): 12207-12219.
|
[2] |
国务院. 国务院常务会议听取大气重污染成因与治理攻关项目研究成果汇报 [R]. 环境经济, 2020, (18): 4.
|
[3] |
Engelmann R, Kanitz T, Baars H, et al. The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The
|
|
neXT generation [J]. Atmospheric Measurement Techniques, 2016, 9(4): 1767-1784.
|
[4] |
Zhang Z, Huang J, Chen B, et al. Three-year continuous observation of pure and polluted dust aerosols over Northwest China
|
|
using the ground-based lidar and sun photometer data [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(2): 1118-
|
11 |
31. [5] LYU L H, Xiang Y, Zhang T S, et al. Comprehensive study of regional haze in the North China Plain with synergistic
|
|
measurement from multiple mobile vehicle-based lidars and a lidar network [J]. Science of the Total Environment, 2020, 721:
|
13 |
7773.
|
[6] |
Chen Y B, Li F F, Shao N, et al. Aerosol lidar intercomparison in the framework of the MEMO project. 1. Lidar self
|
|
calibration and 1 st comparison observation calibration based on statistical analysis method [C]. 2019 International Conference
|
|
on Meteorology Observations (ICMO). IEEE, 2019: 1-5.
|
[7] |
D'Amico G, Amodeo A, Baars H, et al. EARLINET Single Calculus Chain: Overview on methodology and strategy [J].
|
|
Atmospheric Measurement Techniques, 2015, 8(11): 4891-4916.
|
[8] |
Sicard M, Molero F, Guerrero-Rascado J L, et al. Aerosol lidar intercomparison in the framework of SPALINET―The
|
|
Spanish lidar network: Methodology and results [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(10):
|
35 |
47-3559.
|
[9] |
Böckmann C, Wandinger U, Ansmann A, et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 2.
|
|
Aerosol backscatter algorithms [J]. Applied Optics, 2004, 43(4): 977-989.
|
[10] |
Matthais V, Freudenthaler V, Amodeo A, et al. Aerosol lidar intercomparison in the framework of the EARLINET project. 1.
|
|
Instruments [J]. Applied Optics, 2004, 43(4): 961-976.
|
[11] |
Freudenthaler V, Gross S, Engelmann R, et al. EARLI09: Direct intercomparison of eleven EARLINET lidar systems [C].
|
|
Proceedings of the 25th International Laser Radar Conference, St. Petersburg, Russia. 2010: 5-9.
|
[12] |
Papagiannopoulos N, Mona L, Alados-Arboledas L, et al. CALIPSO climatological products: Evaluation and suggestions from
|
|
EARLINET [J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2341-2357.
|
[13] |
Proestakis E, Amiridis V, Marinou E, et al. EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product
|
[J] |
Atmospheric Chemistry and Physics, 2019, 19(18): 11743-11764.
|
[14] |
Wandinger U, Freudenthaler V, Baars H, et al. EARLINET instrument intercomparison campaigns: Overview on strategy and
|
|
results [J]. Atmospheric Measurement Techniques, 2016, 9(3): 1001-1023.
|
[15] |
Pappalardo G, Freudenthaler V, Nicolae D, et al. Lidar calibration center [C]. Proceedings of the 25th International Laser
|
|
Radar Conference, Bucharest, Romania. 2018: 119.
|
[16] |
Campbell J R, Hlavka D L, Welton E J, et al. Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation
|
|
measurement program sites: Instruments and data processing [J]. Journal of Atmospheric and Oceanic Technology, 2002, 19
|
(4) |
: 431-442.
|
[17] |
He Q S, Mao J T. Observation of urban mixed layer at Beijing using a micro pulse lidar [J]. Acta Meteorologica Sinica, 2005, 63
|
(3) |
: 374-384.
|
|
贺千山, 毛节泰. 北京城市大气混合层与气溶胶垂直分布观测研究 [J]. 气象学报, 2005, 63(3): 374-384.
|
[18] |
Zhou H G, Chen Y B, Ma N, et al. Application analysis of lidar network in a dust storm over Jiangsu Province [J].
|
|
Meteorological Hydrological and Marine Instrument, 2018, 35(3): 48-54.
|
|
周红根, 陈玉宝, 马 娜, 等. 江苏地区激光雷达网络在一次沙尘天气过程中的应用分析 [J]. 气象水文海洋仪器, 2018, 35
|
(3) |
: 48-54.
|
[19] |
Chen Y B, Wang X P, Bu Z C, et al. Calibration and result analysis of aerosol LiDAR in megacity experiment [J]. Laser
|
|
Technology, 2022, 46(4): 435-443.
|
|
陈玉宝, 王箫鹏, 步志超, 等. 超大城市试验气溶胶激光雷达标定及结果分析 [J]. 激光技术, 2022, 46(4): 435-443.
|
[20] |
Wang X P, Chen Y B, Bu Z C, et al. Aerosol lidar intercomparison observation calibration at lidar stations based on REAL
|
|
lidar [J]. Journal of Optoelectronics·Laser, 2022, 33(2): 133-140. 王箫鹏, 陈玉宝, 步志超, 等. 基于REAL气溶胶激光雷达在站比对标定技术研究 [J]. 光电子·激光, 2022, 33(2): 133-140.
|
[21] |
Xiang Y, Liu J G, Zhang T S, et al. Uncertainty factors of aerosol optical properties inversion by lidar [J]. Laser &
|
|
Optoelectronics Progress, 2018, 55(9): 092801.
|
|
项 衍, 刘建国, 张天舒, 等. 激光雷达探测气溶胶光学特性的不确定性因素研究 [J]. 激光与光电子学进展, 2018, 55(9):
|
40 |
8-417.
|
[22] |
Volker F, Holger L, Anatoli C, et al. EARLINET lidar quality assurance tools [J]. Atmospheric Measurement Techniques
|
|
Discussion, 2018: 1-35.
|
[23] |
Freudenthaler V. About the effects of polarising optics on lidar signals and the Δ90o calibration [J]. Atmospheric Measurement
|
|
Techniques, 2016, 9(9): 4181-4255.
|
[24] |
Fernald F G. Analysis of atmospheric lidar observations: Some comments [J]. Applied Optics, 1984, 23(5): 652-653.
|
[25] |
Bravo-Aranda J A, Belegante L, Freudenthaler V, et al. Assessment of lidar depolarization uncertainty by means of a
|
|
polarimetric lidar simulator [J]. Atmospheric Measurement Techniques, 2016, 9(10): 4935-4953.
|
[26] |
Wang W, Yi F, Liu F C, et al. Characteristics and seasonal variations of cirrus clouds from polarization lidar observations at a
|
30 |
o N plain site[J]. Remote Sensing, 2020, 12(23): 3998.
|