大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (2): 176-187.doi: 10.3969/j.issn.1673-6141.2025.02.006

• 环境光学监测技术 • 上一篇    下一篇

基于机器学习和多源数据的大气颗粒物质量浓度估算方法

杨蕙荣 1,2, 何南腾 1,2, 卜令兵 1,2*, 莫祖斯 1,2, 樊增昌 1,2, 周晓梦 1,2, 肃欣 1,2   

  1. 1 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044; 2 南京信息工程大学大气物理学院, 江苏 南京 210044
  • 收稿日期:2023-02-02 修回日期:2023-03-08 出版日期:2025-03-28 发布日期:2025-03-24
  • 通讯作者: E-mail: lingbingbu@nuist.edu.cn E-mail:lingbingbu@nuist.edu.cn
  • 作者简介:杨蕙荣 (2001- ), 女, 湖北随州人, 主要从事激光雷达探测气溶胶技术的研究。E-mail: Rhy54321@outlook.com

Estimation method of atmospheric particulate matter mass concentration based on machine learning and multi-source data

YANG Huirong 1,2, HE Nanteng 1,2, BU Lingbing 1,2*, MO Zusi 1,2, FAN Zengchang 1,2, ZHOU Xiaomeng 1,2, SU Xin 1,2   

  1. 1 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Received:2023-02-02 Revised:2023-03-08 Online:2025-03-28 Published:2025-03-24
  • Contact: Lingbing .Bu E-mail:lingbingbu@nuist.edu.cn

摘要: 高浓度的大气颗粒物会引起大气能见度降低, 并对人身健康产生负面影响, 因此, 对颗粒物浓度的时空变化 特征进行连续监测与预测估算对环境污染评估与治理具有十分重要的意义。本工作利用2021 年12 月至2022 年2 月济 宁市任城区的气象数据、国家环境空气质量监测点电化厂站空气质量数据以及激光雷达探测信号反演得到的近地面 气溶胶消光系数 (EC), 基于机器学习算法建立了颗粒物浓度估算模型。该模型首先以前24 h 的空气质量指数 (AQI) 滑动平均值100 为临界值, 将样本分为清洁与污染两种背景条件。随后采用随机森林 (RF) 算法对输入因子进行重要 性排序, 并按照这种RF模型重要性排序, 将因子分别逐个放入随机森林 (RF)、基于思维进化算法优化反向传播神经 网络 (MEA-BPNN)、广义回归神经网络 (GRNN) 和小波神经网络 (WNN) 模型中, 通过对比均方根误差 (ERMS) 建立不 同大气背景下颗粒物浓度反演的最优模型与最优输入因子个数。最后, 将颗粒物估算模型应用于实际大气观测数据, 基于最优模型与输入因子, 对不同大气背景下的颗粒物浓度水平分布进行估算。

关键词: 激光雷达, 气溶胶消光系数, 颗粒物质量浓度, 机器学习

Abstract: High concentration of atmospheric particulate matter can cause the reduction of atmospheric visibility and has a negative impact on human health. Therefore, continuous monitoring, estimation and prediction of the temporal and spatial variation characteristics of particulate matter concentration are of great significance for environmental pollution assessment and treatment. In this work, by using the meteorological data of Rencheng District, Jining City, the air quality data from the Electrochemical Plant Station of Jining national environmental air quality monitoring point and the surface aerosol extinction coefficients inverted from lidar signal over Rencheng District from December 2021 to February 2022, a model of particle concentration estimation is established based on machine learning. First, the sliding average of 100 of the air quality index (AQI) in the previous 24-hour is used as the threshold value to divide the samples into two background conditions: clean and polluted. Then, the importance of input factors is ranked using random forest (RF) algorithm, and according to this importance rank, the factors are put into RF, mind evolution algorithm-back propagation neural network (MEA-BPNN), generalized regression neural network (GRNN) and wavelet neural network (WNN) models, respecitively. And then, by comparing the root mean square errors (ERMS) of different models, the optimal model and the optimal number of input factors for particulate matter concentration inversion under different atmospheric background are established. Finally, the particle estimation model developed is applied to the actual atmospheric observation data to evaluate the horizontal distribution of particle concentration under different atmospheric backgrounds based on the optimal model and input factors.

Key words: lidar, aerosol extinction coefficient, particle mass concentration, machine learning

中图分类号: