| [1] Yu H B, Tan Q, Chin M, et al. Estimates of African dust deposition along the trans-Atlantic transit using the decade-long record of aerosol measurements from CALIOP, MODIS, MISR, and IASI [J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7975-7996. [2] Meng L, Yang X H, Zhao T L, et al. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China [J]. Atmospheric research, 2019, 218: 285-295. [3] Wu Y R, Graaf M D, Menenti M. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: case study over dust and smoke regions [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(16): 8801-8815. [4] Konsta D, Binietoglou L, Gkikas A, et al. Evaluation of the BSC-DREAM8b regional dust model using the 3D LIVAS-CALIPSO product [J]. Atmospheric Environment, 2018, 195: 46-62. [5] Zhang Z Y, Wu W L, Fan M, et al. Validation of Himawari-8 aerosol optical depth retrievals over China [J]. Atmospheric Environment, 2019, 199: 32-44. [6] Peshev Z, Dreischuh T N, Evgenieva T, et al. Lidar observations of long-range transported Saharan dust over Sofia, Bulgaria: a case study of dust mixed with local aerosols [J]. Journal of Applied Remote Sensing, 2016, 10(3): 036009. [7] Sakai T. Balloon-borne and Raman lidar observations of Asian dust and cirrus cloud properties over Tsukuba, Japan [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(6): 3295-3308. [8] David C, Haefele A, Keckhut P, et al. Evaluation of stratospheric ozone, temperature, and aerosol profiles from the LOANA lidar in Antarctica [J]. Polar Science, 2012, 6(3-4): 209-225. [9] Welton E J, Campbell J R, Berkoff T A, et al. The micro-pulse lidar network (MPL-Net), in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2003), paper MK2. [10] Sugimoto N, Uno I R. Observation of Asian dust and air pollution aerosols using a network of ground-based lidars (ADNet): realtime data processing for validation/assimilation of chemical transport models [J]. IOP Conference, 2009, 7(1): 012003. [11] Rocadenbosch F, Mattis I, Ansmann A, et al. The European aerosol research lidar network (EARLINET): an Overview [C]. IEEE International Geoscience & Remote Sensing Symposium. IEEE, 2008. [12] Hoff R M, Mccann K J. A regional east atmospheric lidar mesonet (REALM). AGU Fall Meeting Abstracts, 2002. [13] Chaikovsky A, Ivanov A, Lin Y, et al. Lidar network CIS-LiNet for monitoring aerosol and ozone in CIS regions [C]. Spie. International Society for Optics and Photonics, 2006. [14] 王跃思, 宫正宇, 刘子锐, 等. 京津冀及周边地区大气污染综合立体观测网的建设与应用[J]. 环境科学研究, 2019, 32(10): 1651-1663. Wang Y S, Gong Z Y, Liu Z R, et al. Construction and application of comprehensive observation network for air pollution in Beijing-Tianjin-Hebei and its surrounding areas [J]. Research of Environmental Sciences, 2019, 32(10): 1651-1663. [15] 毛飞跃, 罗熙, 宋捷, 等. 中国星载气溶胶和云高光谱分辨率激光雷达的模拟和反演[J]. 中国科学: 地球科学, 2022, 52(4): 620-633. Mao F Y, Luo X, Song J, et al. Simulation and retrieval for spaceborne aerosol and cloud high spectral resolution lidar of China [J]. Scientia Sinica (Terrae), 2022, 52(4): 620-633. [16] Huang Z W, Qi S Q, Zhou T, et al. Investigation of aerosol absorption with dual-polarization lidar observations [J]. Optics Express, 2020, 28(5): 7028-7035. [17] 朱首正, 卜令兵, 刘继桥, 等. 机载高光谱分辨率激光雷达探测大气气溶胶光学特性及污染研究[J]. 中国激光, 2021, 48(17): 158-170. Zhu S Z, Bu L B, Liu J Q, et al. Study on airborne high spectral resolution lidar detecting optical properties and pollution of atmospheric aerosol [J]. Chinese Journal of Lasers, 2021, 48(17): 158-170. [18] 张寅超, 陈粟, 檀望舒, 等. 以水云后向散射系数为边界值的激光雷达气溶胶后向散射系数反演方法[J]. 光学学报, 2022, 42(24): 171-180. Zhang Y C, Chen S, Tan W S, et al. Inversion algorithm of aerosol backscattering coefficient with water cloud particle backscattering coefficient as boundary value [J]. Acta Optica Sinica, 2022, 42(24): 171-180. [19] Saito M, Yang P. Advanced bulk optical models linking the backscattering and microphysical properties of mineral dust aerosol [J]. Geophysical Research Letters, 2021, 48(17): 1-12. [20] 朱江, 唐晓, 王自发, 等. 大气污染资料同化与应用综述[J]. 大气科学, 2018, 42(3): 607-620. Zhu J, Tang X, Wang Z F, et al. A Review of air quality data assimilation methods and their application [J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 607-620. [21] 杨旭, 唐颖潇, 蔡子颖, 等. 基于气溶胶三维变分同化天津PM2. 5数值预报研究[J]. 中国环境科学, 2021, 41(12): 5476-5484. Yang X, Tang Y X, Cai Z Y, et al. Impact of aerosol data assimilation with 3-DVAR method on PM2. 5 forecast over Tianjin [J]. China Environmental Science, 2021, 41(12): 5476-5484. [22] 刘瑞婷, 陈明轩, 肖现, 等. 雷达资料快速更新四维变分同化中增加地面资料同化对强对流临近数值预报的影响[J]. 气象学报, 2021, 79(6): 921-942. Liu R T, Chen M X, Xiao X, et al. The impact of assimilating surface observations in rapid-refresh four-dimensional variational radar data assimilation system on model-based severe convection nowcasting [J]. Acta Meteorologica Sinica, 2021, 79(6): 921-942. [23] Zerull R H, Giese R H, Weiss K. Scattering functions of nonspherical dielectric and absorbing particles vs Mie theory [J]. Applied Optics, 1977, 16(4): 777-778. [24] Pinnick R G, Rosen J M, Hofmann D J. Measured light-scattering properties of individual aerosol particles compared to Mie scattering theory [J]. Applied Optics, 1973, 12(1): 37-41. [25] Fernald F G. Analysis of atmospheric lidar observations: some comments [J]. Applied Optics, 1984, 23(5): 652-653. [26] 刘东. 偏振-米激光雷达的研制和大气边界层的激光雷达探测[D]. 合肥: 中国科学院安徽光学精密机械研究所, 2005: 15-20. Liu D. Development of polarization-Mie lidar and lidar observation of atmosphere boundary layer [D]. Hefei: Anhui institute of optics and precision machinery, Chinese academy of sciences, 2005: 15-20. [27] Ali M A, Islam M M, Islam M N, et al. Investigations of MODIS AOD and cloud properties with CERES sensor based net cloud radiative effect and a NOAA HYSPLIT Model over Bangladesh for the period 2001-2016 [J]. Atmospheric Research, 2019, 215: 268-283. [28] Li Y C, Liu J, Han H, et al. Collective impacts of biomass burning and synoptic weather on surface PM2. 5 and CO in northeast China [J]. Atmospheric Environment, 2019, 213: 64-80[29] 刘慧, 夏敦胜, 陈红, 等. 2017年兰州市大气污染物输送来源及传输特征模拟分析[J]. 环境科学研究, 2019, 32(6): 993-1000. Liu H, Xia D S, Chen H, et al. Simulation analysis of sources and transmission characteristics of air pollutants in Lanzhou city in 2017 [J]. Research of Environmental Sciences, 2019, 32(6): 993-1000. [30] 闫世明, 王雁, 郭伟, 等. 太原市秋冬季大气污染特征和输送路径及潜在源区分析[J]. 环境科学, 2019, 40(11): 4801-4809. Yan S M, Wang Y, Guo W, et al. Characteristics, transportation, pathways, and potential sources of air pollution during autumn and winter in Taiyuan [J]. Environmental Science, 2019, 40(11): 4801-4809. [31] Hulst H C V D. Light scattering by small particles [M]. New York: John Wiley & Sons Inc, 1957: 127-129. |