大气与环境光学学报 ›› 2014, Vol. 9 ›› Issue (3): 229-236.

• 光学遥感 • 上一篇    下一篇

基于稀疏性非负矩阵分解的偏振图像快速融合方法

曾献芳1,徐国明2,易维宁3,黄红莲3,尹成亮2   

  1. (1. 安徽水利水电职业技术学院,安徽 合肥,230601; 
    2. 解放军陆军军官学院,安徽 合肥,230031; 
    3. 中国科学院安徽光学精密机械研究所,安徽 合肥,230031)
  • 收稿日期:2013-09-30 修回日期:2013-11-25 出版日期:2014-05-28 发布日期:2014-05-21
  • 通讯作者: 徐国明(1979-),男,安徽太和人,讲师,博士研究生,主要研究方向为稀疏表示、超分辨率重建。 E-mail:xgm121@163.com
  • 作者简介:曾献芳(1973-),女,安徽凤台人,副教授,硕士,主要研究方向为数字电子技术、图像处理。
  • 基金资助:

    安徽省自然科学基金项目(1208085QF126)资助

Polarimetric Image Fast Fusion Method Via Sparse Non-Negative Matrix Factorization

ZENG Xian-fang1, XU Guo-ming2, YI Wei-ning3, HUANG Hong-lian3, YIN Cheng-liang2   

  1. ( 1. Anhui Teehnieal College of Water Resources and Hydroelectric Power, Hefei 230601, China; 
    2. Army Officer Academy, PLA, Hefei 230031, China; 
    3. Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China)
  • Received:2013-09-30 Revised:2013-11-25 Published:2014-05-28 Online:2014-05-21

摘要:

针对基于非负矩阵分解(non-negative matrix factorization, NMF)的偏振图像融合方法效率低的不足,提出一种基于稀疏性NMF的偏振图像快速融合方法。首先,以偏振信息解析得到的各偏振参量图像构造原始数据集,其次,对NMF增加稀疏性约束,利用稀疏表示下的在线字典学习算法进行快速分解,然后对分解得到的三幅特征基图像按清晰度和方差进行排序,将排序后的特征基图像经直方图匹配及HSI颜色映射后,变换到RGB颜色空间,得到融合图像。与基于NMF的方法相比,运行时间提高约120倍,达到约1.5 s完成一次融合过程。实验结果验证了该方法在改善融合效果的同时,运行效率明显提高。

关键词: 图像融合, 偏振图像, 在线字典学习, 稀疏性非负矩阵分解

Abstract:

To improve the efficiency of the polarimetric image fusion methods via NMF, a fast fusion method based on sparse NMF was proposed. Firstly, the polarization parameter images were acquired by computing from intensity images of different polarization angle. The original data set was organized by the polarization parameter images. Secondly, the sparse constraint was added to NMF and the cost function was solved by online dictionary learning algorithm of sparse representation. Then, the data set was factorized by sparse NMF and three feature basis images sorted by definition and variance were obtained. Next, after histogram matching, these three sorted feature basis images were mapped into three color channels of HSI color model. Finally, the fused image was achieved by transforming the image from HSI to RGB color model. Compared with the method based on NMF, the running time is improved with 120 times. One fusing process can be finished in 1.5 s. Experiment results show that the proposed method not only has good fusion results but also enhances the running efficiency evidently.

Key words: image fusion, polarimetric image, online dictionary learning, sparse non-negative matrix factorization

中图分类号: