大气与环境光学学报 ›› 2018, Vol. 13 ›› Issue (5): 342-354.
马宏亮1, 2,孙明国2,吴义恒1,王振东1,曹振松2*
出版日期:
2018-09-28
发布日期:
2018-09-28
作者简介:
马宏亮(1987-),男,山东济宁人,博士,讲师,主要从事大气分子高分辨率吸收光谱特性方面的研究。
基金资助:
Supported by National Natural Science Foundation of China (国家自然科学基金, 41805014),Youth Foundation for Innovation and Promotion of the Chinese Academy of Sciences,(中国科学院青年创新促进会基金 2015264)
MA Hongliang1, 2, SUN Mingguo2, WU Yiheng1, WANG Zhendong1, CAO Zhensong2*
Published:
2018-09-28
Online:
2018-09-28
About author:
马宏亮(1987-),男,山东济宁人,博士,讲师,主要从事大气分子高分辨率吸收光谱特性方面的研究。
Supported by:
Supported by National Natural Science Foundation of China (国家自然科学基金, 41805014),Youth Foundation for Innovation and Promotion of the Chinese Academy of Sciences,(中国科学院青年创新促进会基金 2015264)
摘要:
水汽连续吸收广泛存在于红外波段,对于地球辐射平衡和遥感探测有着重要的意义。一般水汽连续吸收的研究大多处于中红外“窗口”区域,而在吸收谱带内和近红外“窗口”区域的研究较少。目前,水汽连续吸收的机理仍然是一个有争议的课题。论文简要阐述了现有理论及计算模型的发展历史和研究现状,介绍了几种实验测量方法的原理、优点与不足,并对水汽连续吸收的发展进行了展望。
中图分类号:
马宏亮 孙明国 吴义恒 王振东 曹振松. 红外波段水汽连续吸收研究进展[J]. 大气与环境光学学报, 2018, 13(5): 342-354.
MA Hong-Liang, SUN Ming-Guo, WU Xi-Heng, WANG Zhen-Dong, CAO Zhen-Song. Research Progress of Water Vapour Continuum in the Infrared Spectral Regions[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 342-354.
[1] Clough S A, Iacono M J, Moncet J L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor [J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15761-15785. [2] Kilsby C G, Edwards D P, Saunders R W, et al. Water-vapour continuum absorption in the tropics: Aircraft measurements and model comparisons [J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(506): 715-748. [3] Shine K P, Ptashnik I V, Radel G. The water vapour continuum: Brief history and recent developments [J]. Surveys in Geophysics, 2012, 33(3-4): 535-555. [4] Rothman L S, Gordon I E, Babikov Y, et al. The HITRAN2012 molecular spectroscopic database [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 4-50. [5] Shine K P, Campargue A, Mondelain D, et al. The water vapour continuum in near-infrared windows–Current understanding and prospects for its inclusion in spectroscopic databases [J]. Journal of Molecular Spectroscopy, 2016, 327: 193-208. [6] Viktorova A A, Zhevakin S A. Absorption of microradiowaves in air by the dimers of water vapor (Microradiowave absorption in air by water vapor dimers) [C]//AKADEMIIA NAUK SSSR, DOKLADY, 1966, 171: 1061-1064. [7] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600–1000 cm-1 region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541. [8] Arefev V N, Dianov-Klokov V I. Attenuation of 10.6-μm radiation by water vapor and the role of (H2O)2 dimers [J]. Optics and Spectroscopy, 1977, 42(5): 488-492. [9] Vigasin A A. Water vapor continuous absorption in various mixtures: possible role of weakly bound complexes [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 64(1): 25-40. [10] Ptashnik I V, Smith K M, Shine K P, et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm?1: Evidence for water dimmers [J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408. [11] Ptashnik I V, Shine K P, Vigasin A A. Water vapour self-continuum and water dimers. 1. Analysis of recent work [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011(112): 1286-1303. [12] Elsasser W M. Far infrared absorption of atmospheric water vapor [J]. Astrophysical Journal, 1938, 87(5): 497-507. [13] Clough S A, Kneizys F X, Davies R W. Line shape and the water vapor continuum [J]. Atmospheric Research, 1989, 23 (3): 229-241. [14] Tipping R H, Ma Q. Theory of the water vapor continuum and validations [J]. Atmospheric Research, 1995, 36(1-2): 69-94. [15] Ma Q, Tipping R H, Leforestier C. Temperature dependences of mechanisms responsible for the water-vapor continuum absorption. I. Far wings of allowed lines [J]. The Journal of Chemical Physics, 2008, 128(12): 124313. [16] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307. [17] Baranov Y I, Lafferty W J. The water vapour self-and water-nitrogen continuum absorption in the 1000 and 2500 cm?1 atmospheric windows [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012, 370(1968): 2578-2589. [18] Hettner G. über das ultrarote Absorptionsspektrum des Wasserdampfes [J]. Annalen der Physik, 1918, 360(6): 476-496. [19] Elsasser W M. Far infrared absorption of atmospheric water vapor [J]. The Astrophysical Journal, 1938, 87: 497. [20] Gebbie H A, Harding W R, Hilsum C, et al. Atmospheric transmission in the 1 to 14 μm region [C]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1951, 206(1084): 87-107. [21] Anthony R. Atmospheric absorption of solar infrared radiation [J]. Physical Review, 1952, 85(4): 674. [22] Cowling T G. The absorption of water vapour in the far infra-red [J]. Reports on Progress in Physics, 1942, 9(1): 29. [23] Strong J. Study of atmospheric absorption and emission in the infrared spectrum [J]. Journal of the Franklin Institute, 1941, 232(1): 1-22. [24] Roach W T, Goody R M. Absorption and emission in the atmospheric window from 770 to 1250 cm?1 [J]. Quarterly Journal of the Royal Meteorological Society, 1958, 84(362): 319-333. [25] Bignell K, Saiedy F, Sheppard P A. On the atmospheric infrared continuum [J]. Journal of the Optical Society of America, 1963, 53(4): 466-479. [26] Fomin V V, Tvorogov S D. Formation of the far wings contour of spectral lines broadened by a foreign gas; analysis of exponential decrease of continuous absorption beyond the band head of the 4.3-μm, band of CO2 [J]. Applied Optics, 1973, 12(3): 584-589. [27] Tvorogov S D, Nesmelova L I. Radiative processes in the band wings of atmospheric gases [J]. Akademiia Nauk SSSR Fizika Atmosfery i Okeana, 1977, 12: 627-633. [28] Burch D E, Gryvnak D A, Pembrook J D. Investigation of the absorption of infrared radiation by atmospheric gases [R]. Philco-Ford Corp newport Beach CA Aeronutronic DIV, 1970. [29] Gryvnak D A, Burch D E. Infrared Absorption by CO2 and H2O [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1978. [30] Fano U. Pressure broadening as a prototype of relaxation [J]. Physical Review, 1963, 131(1): 259. [31] Rosenkranz P W. Pressure broadening of rotational bands. I. A statistical theory [J]. The Journal of Chemical Physics, 1985, 83(12): 6139-6144. [32] Rosenkranz P W. Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm?1 [J]. The Journal of Chemical Physics, 1987, 87(1): 163-170. [33] Ma Q, Tipping R H. A far wing line shape theory and its application to the water continuum absorption in the infrared region. I [J]. The Journal of Chemical Physics, 1991, 95(9): 6290-6301. [34] Ma Q, Tipping R H. A far wing line shape theory and its application to the foreign-broadened water continuum absorption. III [J]. The Journal of chemical physics, 1992, 97(2): 818-828. [35] Ma Q, Tipping R H. The averaged density matrix in the coordinate representation: application to the calculation of the far-wing line shapes for H2O [J]. The Journal of Chemical Physics, 1999, 111(13): 5909-5921. [36] Ma Q, Tipping R H. The frequency detuning correction and the asymmetry of line shapes: the far wings of H2O–H2O [J]. The Journal of Chemical Physics, 2002, 116(10): 4102-4115. [37] Cormier J G, Ciurylo R, Drummond J R. Cavity ringdown spectroscopy measurements of the infrared water vapor continuum [J]. The Journal of Chemical Physics, 2002, 116(3): 1030-1034. [38] Bogdanova J V, Rodimova O B. Line shape in far wings and water vapor absorption in a broad temperature interval [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15): 2298-2307. [39] Klimeshina T E, Rodimova O B. Temperature dependence of the water vapor continuum absorption in the 3–5 μm spectral region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 119: 77-83. [40] Penner S S, Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapor [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1967, 7(4): 687-690. [41] Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600–1000 cm-1 region [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1968, 8(8): 1537-1541. [42] Bignell K J. The water-vapour infra‐red continuum [J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(409): 390-403. [43] Aref’ev V N, Dianov-Klokov V I, Radionov V F, et al. Laboratory measurements of attenuation of CO/sub2/laser radiation by pure water vapor [J]. Optics and Spectroscopy, 1975, 39(5).(页码?) [44] Aref’ev V N, Dianov-Klokov V I. Attenuation of 10.6-μm radiation by water vapor and the role of (H2O)2 dimers [J]. Optics and Spectroscopy, 1977, 42: 488-492. [45] Hinderling J, Sigrist M W, Kneubühl F K. Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window [J]. Infrared physics, 1987, 27(2): 63-120. [46] Vaida V, Daniel J S, Kjaergaard H G, et al. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer [J]. Quarterly Journal of the Royal Meteorological Society, 2001, 127(575): 1627-1643. [47] Schofield D P, Kjaergaard H G. Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer [J]. Physical Chemistry Chemical Physics, 2003, 5(15): 3100-3105. [48] Kjaergaard H G, Garden A L, Chaban G M, et al. Calculation of vibrational transition frequencies and intensities in water dimer: comparison of different vibrational approaches [J]. The Journal of Physical Chemistry A, 2008, 112(18): 4324-4335. [49] Garden A L, Halonen L, Kjaergaard H G. Calculated band profiles of the OH-stretching transitions in water dimer [J]. The Journal of Physical Chemistry A, 2008, 112(32): 7439-7447. [50] Ptashnik I V, Smith K M, Shine K P, et al. Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm?1: Evidence for water dimmers [J]. Quarterly Journal of the Royal Meteorological Society, 2004, 130(602): 2391-2408. [51] Paynter D J, Ptashnik I V, Shine K P, et al. Pure water vapor continuum measurements between 3100 and 4400 cm?1: Evidence for water dimer absorption in near atmospheric conditions [J]. Geophysical Research Letters, 2007, 34(12). (页码?) [52] Vigasin A A. On the spectroscopic manifestations of weakly bound complexes in rarefied gases [J]. Chemical Physics Letters, 1985, 117(1): 85-88. [53] Vigasin A A. Bound, metastable and free states of bimolecular complexes [J]. Infrared Physics, 1991, 32: 461-470. [54] Vigasin A A. Bimolecular absorption in atmospheric gases [J]. Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere, 2003, 27: 23-47. [55] Vigasin A A. On the possibility to quantify contributions from true bound and metastable pairs to infrared absorption in pressurised water vapour [J]. Molecular Physics, 2010, 108(18): 2309-2313. [56] Epifanov S Y, Vigasin A A. Subdivision of phase space for anisotropically interacting water molecules [J]. Molecular Physics, 1997, 90(1): 101-106. [57] Schenter G K, Kathmann S M, Garrett B C. Equilibrium constant for water dimerization: analysis of the partition function for a weakly bound system [J]. The Journal of Physical Chemistry A, 2002, 106(8): 1557-1566. [58] Lokshtanov S E, Ivanov S V, Vigasin A A. Statistical physics partitioning and classical trajectory analysis of the phase space in CO2–Ar weakly interacting pairs [J]. Journal of Molecular Structure, 2005, 742(1): 31-36. [59] Kjaergaard H G, Robinson T W, Howard D L, et al. Complexes of importance to the absorption of solar radiation [J]. The Journal of Physical Chemistry A, 2003, 107(49): 10680-10686. [60] Baranov Y I, Lafferty W J, Ma Q, et al. Water-vapor continuum absorption in the 800–1250 cm?1 spectral region at temperatures from 311 to 363 K [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(12): 2291-2302. [61] Ptashnik I V, McPheat R A, Shine K P, et al. Water vapor self‐continuum absorption in near‐infrared windows derived from laboratory measurements [J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D16).(页码?) [62] Roberts R E, Selby J E A, Biberman L M. Infrared continuum absorption by atmospheric water vapor in the 8–12-μm window [J]. Applied Optics, 1976, 15(9): 2085-2090. [63] Burch D E. Continuum absorption by atmospheric H2O [C]. Proceedings of SPIE, Atmospheric Transmission, 1981, 277: 28-40. [64] Burch D E, Alt R L. Continuum Absorption by H2O in the 700-1200 cm-1 and 2400-2800 cm-1 Windows [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1984. [65] Burch D E. Absorption by H2O in Narrow Windows between 3000 and 4200 cm-1 [R]. Ford Aerospace and Communications Corp Newport Beach CA Aeronutronic DIV, 1985. [66] Van Vleck J H, Huber D L. Absorption, emission, and linebreadths: A semihistorical perspective [J]. Reviews of Modern Physics, 1977, 49(4): 939. [67] Paynter D J, Ptashnik I V, Shine K P, et al. Laboratory measurements of the water vapor continuum in the 1200–8000 cm?1 region between 293 K and 351 K [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D21). [68] Cormier J G, Hodges J T, Drummond J R. Infrared water vapor continuum absorption at atmospheric temperatures [J]. The Journal of Chemical Physics, 2005, 122(11): 114309. [69] Mlawer E J, Payne V H, Moncet J L, et al. Development and recent evaluation of the MT_CKD model of continuum absorption [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2520-2556. [70] Ptashnik I V, Petrova T M, Ponomarev Y N, et al. Near-infrared water vapour self-continuum at close to room temperature [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 120: 23-35. [71] Rowe P M, Walden V P. Improved measurements of the foreign-broadened continuum of water vapor in the 6.3 μm band at ?30°C [J]. Applied Optics, 2009, 48(7): 1358-1365. [72] Green P D, Newman S M, Beeby R J, et al. Recent advances in measurement of the water vapour continuum in the far-infrared spectral region [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2637-2655. [73] Baranov Y I. The continuum absorption in H2O+N2 mixtures in the 2000–3250cm?1 spectral region at temperatures from 326 to 363K [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(14): 2281-2286. [74] Fulghum S F, Tilleman M M. Interferometric calorimeter for the measurement of water-vapor absorption [J]. Journal of the Optical Society of America B, 1991, 8(12): 2401-2413. [75] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm [C]. Proceedings of SPIE, 2013, 8898: 889808. [76] Orphal J, Ruth A A. High-resolution Fourier-transform cavity-enhanced absorption spectroscopy in the near-infrared using an incoherent broad-band light source [J]. Optics Express, 2008, 16(23): 19232-19243. [77] Ptashnik I V, McPheat R A, Shine K P, et al. Water vapour foreign-continuum absorption in near-infrared windows from laboratory measurements [J]. Philosophical Transactions of the Royal Society A, 2012, 370(1968): 2557-2577. [78] Ptashnik I V, Petrova T M, Ponomarev Y N, et al. Water vapor continuum absorption in near-IR atmospheric windows [J]. Atmospheric and Oceanic Optics, 2015, 28: 115-120. [79] Morville J, Kassi S, Chenevier M, et al. Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking [J]. Applied Physics B: Lasers and Optics, 2005, 80(8): 1027-1038. [80] Kerstel E R T, Iannone R Q, Chenevier M, et al. A water isotope (2H, 17O, and 18O) spectrometer based on optical feedback cavity-enhanced absorption for in situ airborne applications [J]. Applied Physics B: Lasers and Optics, 2006, 85(2): 397-406. [81] Bucholtz A. Rayleigh-scattering calculations for the terrestrial atmosphere [J]. Applied Optics, 1995, 34(15): 2765-2773. [82] Reichert L, Hernandez M D A, Burrows J P, et al. First CRDS-measurements of water vapour continuum in the 940 nm absorption band [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2007, 105(2): 303-311. [83] Mondelain D, Aradj A, Kassi S, et al. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 130: 381-391. [84] Aldener M, Brown S S, Stark H, et al. Near-IR absorption of water vapor: Pressure dependence of line strengths and an upper limit for continuum absorption [J]. Journal of Molecular Spectroscopy, 2005, 232(2): 223-230. [85] Mondelain D, Manigand S, Kassi S, et al. Temperature dependence of the water vapor self‐continuum by cavity ring‐down spectroscopy in the 1.6 μm transparency window [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(9): 5625-5639. [86] Wu Jihua, Sun Fengyi, Pu Dasheng, et al. Laser photo-acoustic detection and its application to continuous absorption measurement of water vapour [J]. Chinese Journal of Lasers, 1982, 9(5): 101(in Chinese). 吴际华, 孙凤仪, 浦达生, 等. 激光光声探测技术及其在水气连续吸收测量中的应用 [J]. 中国激光, 1982, 9(5): 101. |
[1] | 曹亚楠, 袁野, 郑小艺, 高金兰. 基于卫星观测安徽淮北地区水汽分布特征研究[J]. 大气与环境光学学报, 2023, 18(3): 269-278. |
[2] | 汪嘉林, 熊 伟, 李大成∗, 吴 军. 弱信号亮温光谱的污染气体快速识别算法[J]. 大气与环境光学学报, 2022, 17(5): 542-549. |
[3] | 徐 波, 叶晓新, 张 毅∗, 杨晓龙, 李发帝. 利用便携式FTIR 技术获取城市餐饮 VOCs 排放特征[J]. 大气与环境光学学报, 2020, 15(5): 357-364. |
[4] | 洪光烈, 李虎$, 王建宇, 王一楠, 孔伟. 激光掩星探测大气水汽的阿贝尔变换[J]. 大气与环境光学学报, 2020, 15(3): 180-188. |
[5] | 赵慧洁, 米致远, 马晓航, 贾国瑞. 基于红外光谱的大气温湿度反演研究进展[J]. 大气与环境光学学报, 2020, 15(2): 81-89. |
[6] | 张晓春,宋庆利,曹永,王鹏,于大江,王缅,温民. 基于傅立叶红外变换技术的温室气体在线监测仪在龙凤山大气温室气体本底站的应用[J]. 大气与环境光学学报, 2019, 14(4): 279-288. |
[7] | 彭于权1,2,阚瑞峰1,许振宇1,夏晖晖1,聂伟1,2,张步强1,2, 裴晓凡1. 基于可调谐半导体激光吸收光谱技术的甲烷/空气预混平焰炉温度测量[J]. 大气与环境光学学报, 2019, 14(3): 228-234. |
[8] | 朱余1,曹永2*,张付海1,佘晶京1,褚天高1. 基于傅立叶变换红外光谱技术的烟气超低排放监测系统应用研究[J]. 大气与环境光学学报, 2019, 14(2): 129-135. |
[9] | 史悦 谢晨波 谭敏 王邦新 吴德成 刘东 王英俭. 拉曼激光雷达测量水汽误差源分析研究[J]. 大气与环境光学学报, 2018, 13(3): 170-177. |
[10] | 王啸卿 刘玉柱 李相鸿 王俊锋 林华 秦朝朝. 外电场下氯甲烷的光谱和解离特性[J]. 大气与环境光学学报, 2017, 12(3): 195-201. |
[11] | 李亮 方勇华 赵彦东 杨敏. 基于FPGA的红外光谱信号采集系统设计[J]. 大气与环境光学学报, 2016, 11(4): 313-320. |
[12] | 赵强 韩露 杨世植 杨鹏 崔生成. 利用超光谱红外卫星数据反演大气廓线研究[J]. 大气与环境光学学报, 2016, 11(2): 118-124. |
[13] | 翟崇治 刘芮伶 许丽萍 金岭 余家燕 李礼 刘敏. 利用SOF-FTIR测量重庆晏家工业区挥发性有机物排放[J]. 大气与环境光学学报, 2015, 10(2): 158-164. |
[14] | 戴聪明 刘栋 魏合理. 中高层红外光谱大气遥感研究进展[J]. 大气与环境光学学报, 2015, 10(2): 174-186. |
[15] | 张媛 袁淑文 向曦子. 强对流天气过程的典型案例分析[J]. 大气与环境光学学报, 2014, 9(3): 194-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||