大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (4): 358-364.

• 光学遥感 • 上一篇    下一篇

面向对象的高分辨率遥感影像建筑物信息提取

韩东成1;2∗, 杨世植1, 赵 强3, 韩 露1;2, 杨 志3, 崔生成1   

  1. 1 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031; 2 中国科学技术大学, 安徽 合肥 230022; 3 安徽建筑大学环境与能源工程学院, 安徽 合肥 23061
  • 收稿日期:2019-05-23 修回日期:2020-02-01 出版日期:2021-07-28 发布日期:2021-07-28
  • 通讯作者: hdc@dcustc.com E-mail:1039433532@qq.com
  • 作者简介:韩东成 (1992 - ), 安徽阜阳人, 硕士研究生, 主要从事遥感图像处理与目标识别方面的研究。 E-mail: hdc@dcustc.com
  • 基金资助:
    Supported by Anhui Provincial Natural Science Foundation (安徽省自然科学基金项目, 1508085SQD208), First Phase Project of Urban Fine Management Remote Sensing Application Demonstration System (高分城市精细化管理遥感应用示范系统 (一期) 项目, 06-Y30B04-9002-13/15), The Science and Technology Plan project of Housing and Urban-Rural Development of Anhui Province (安徽省住房城乡建设科学技术计划项目, 2020-SF10), Key Project of Anhui Provincial University Excellent Young Talents Support Program (安徽省高校优秀青年人才支持计划重点项目, gxyqZD2020036)

Object-Oriented Building Information Extraction from High Resolution Remote Sensing Satellite Imagery

HAN Dongcheng1;2∗, YANG Shizhi1, ZHAO Qiang3, Han Lu1;2, YANG zhi3, CUI Shengcheng1   

  1. 1 Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230022, China; 3 School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
  • Received:2019-05-23 Revised:2020-02-01 Published:2021-07-28 Online:2021-07-28
  • Contact: Dong-Cheng HAN E-mail:1039433532@qq.com
  • Supported by:
    Anhui Provincial Natural Science Foundation

摘要: 为实现建筑物单体信息的高精度提取, 采用基于规则的面向对象方法, 提出了一种经图像预处理、多尺度分 割、构建规则信息和特征提取的技术流程。以基于国产高分二号卫星的扬州市两个样本区 (佳家花园小区和联谊南 苑小区) 为例对该方法进行了实验验证, 研究结果表明: 与传统方法相比, 新方法提取的效果更好、精度更高, 识别精 度达到 97.7%, Kappa 系数为 0.93。

关键词: 规则数据库, 面向对象, 信息提取, 高分辨率遥感影像, 建筑物

Abstract: In order to achieve high-precision building information extraction, a rule-based object-oriented method is adopted, and a technical process of image preprocessing, multi-scale segmentation, construction of rule information, and feature extraction is proposed. Two sample areas in Yangzhou City, China (Jiajia Garden Community and Lianyi Nanyuan Community) based on the domestically produced GF-2 satellite are used for experimental validation of the method. It is shown that compared with the traditional method, the new method has better extraction effect and higher accuracy, with a recognition accuracy of 97.7% and a Kappa coefficient of 0.93.

Key words: rule database, object-oriented, information extraction, high resolution remote sensing image, building

中图分类号: