大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (5): 415-423.

• 大气光学 • 上一篇    下一篇

基于BP 神经网络的能见度估测研究

金 钊1, 邱康俊2∗, 张苗苗2   

  1. 1 合肥市气象局市公共气象服务中心, 安徽 合肥 230031; 2 安徽省气象信息中心运行监控科, 安徽 合肥 230031
  • 收稿日期:2021-03-26 修回日期:2021-06-29 出版日期:2021-09-28 发布日期:2021-09-28
  • 通讯作者: E-mail: 693550980@qq.com E-mail:E-mail: 693550980@qq.com
  • 作者简介:金 钊 (1990 - ), 安徽合肥人, 主要从事综合气象观测业务。 E-mail: 1603119445@qq.com

Investigation of Visibility Estimation Based on BP Neural Network

JIN Zhao1, QIU Kangjun2∗, ZHANG Miaomiao2   

  1. 1 Public Meteorological Service Center of Hefei Meteorological Bureau, Hefei 230031, China; 2 Operation Monitoring Section of Anhui Meteorological Information Center, Hefei 230031, China
  • Received:2021-03-26 Revised:2021-06-29 Published:2021-09-28 Online:2021-09-28

摘要: 利用安徽省高速公路能见度观测站网的分钟能见度及温湿风资料, 在全面分析能见度与各个气象要素相关 性的基础上, 重点探讨了高速公路能见度的短时预测模型。应用 BP 神经网络, 以湿度、温度、平均风速、瞬时风速、 极大风速作为 BP 神经网络输入层, 输出层为能见度, 结果表明整体试验数据偏差在可接受范围内。采用顺序试验样 本时, 相对误差在 20% 以内的占总试验次数的 68.6%; 在随机样本各次试验中, BP 网络模拟输出与检验样本的相关性 较好, 相关系数在 0.6∼0.8 之间; 低能见度随机样本试验结果表明, 模型输出值与样本值均方根误差集中在 700∼850 m 之间, 变化幅度不大, 说明神经网络算法具有较高的稳定性。

关键词: 逆传播神经网络, 能见度, 气象要素, 预测模型

Abstract: Based on the comprehensive analysis of the correlation between visibility and various meteorological elements, the short-term prediction model for highway visibility was studied by using the visibility, temperature, humidity and wind strength data from Anhui Provincial Highway Visibility Observation Station Network. Experiments were conducted with humidity, temperature, average wind speed, instantaneous wind speed, and maximum wind speed as the input layer of the BP neural network, and the visibility as the output layer. The results show that the overall deviation of the experimental data is within the acceptable range. For sequential test samples, the tests whose relative error within 20% account for 68.6% of the total number of tests. In each random sample test, the BP network simulation output shows a good correlation with the test sample, with a correlation coefficient between 0.6 and 0.8. The low-visibility random sample test results show that the root mean square error between the model output value and the sample value is in the range of 700-850 m, with little amplitude of variation, indicating that the neural network algorithm has relatively high stablility.

Key words: back propagation neural network, visibility, meteorological elements, prediction mode

中图分类号: