大气与环境光学学报 ›› 2021, Vol. 16 ›› Issue (6): 520-528.

• 光学遥感 • 上一篇    下一篇

基于Landsat8 影像的蓝藻水华提取方法对比研究

晁明灿1∗, 赵 强2, 杨铁利1, 谢发之2   

  1. 1 辽宁科技大学土木工程学院, 辽宁 鞍山 114051; 2 安徽建筑大学环境与能源工程学院, 安徽 合肥 230601
  • 收稿日期:2020-07-29 修回日期:2021-02-26 出版日期:2021-11-28 发布日期:2021-11-28
  • 通讯作者: E-mail: 262439340@qq.com E-mail:262439340@qq.com
  • 作者简介:晁明灿 (1995 - ), 安徽六安人, 硕士研究生, 主要从事水质遥感方面的研究。 E-mail: cmc2877160956@163.com
  • 基金资助:
    Supported by National Natural Science Foundation of China (国家自然科学基金项目, 21777001)

Comparative Research of Cyanobacteria Blooms Extraction Methods Based on Landsat8 Images

CHAO Mingcan1∗, ZHAO Qiang2, YANG Tieli1, XIE Fazhi2   

  1. 1 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China; 2 School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China
  • Received:2020-07-29 Revised:2021-02-26 Published:2021-11-28 Online:2021-11-28

摘要: 对湖泊蓝藻水华实现精准的遥感监测, 可为湖泊的污染防控和治理提供科学依据。基于 Landsat8 多光谱数 据, 以巢湖为研究对象, 利用归一化植被指数 (NDVI) 和浮游藻类指数 (FAI) 分别对蓝藻水华进行提取, 并将提取的蓝 藻水华强度划分为三级, 进一步对这两种提取方法进行对比, 分析了巢湖的蓝藻水华分布。研究结果表明: (1) 针对 NDVI 和 FAI 两种不同提取方法确定的阈值及分级阈值可以有效地提取巢湖的蓝藻水华; (2) 相对于 NDVI 方法, FAI 方法可以降低云对提取精度的影响; (3) 巢湖西半湖及沿岸水体富营养化一直比较严重, 东半湖的富营养化也日趋严 重。研究确定的蓝藻水华提取阈值及分级阈值不仅为巢湖的蓝藻水华污染治理和预警提供方法支持, 还为其它湖泊 蓝藻水华的遥感监测提供参考依据。

关键词: 蓝藻水华, 浮游藻类指数, 归一化植被指数, 巢湖, 阈值

Abstract: Accurate remote sensing monitoring of cyanobacteria blooms in lakes can provide scientific basis for prevention and control of lake pollution. Based on Landsat8 multispectral data, Chaohu Lake, China, was taken as research objects, and normalized difference vegetation index (NDVI) model and floating algae index (FAI) model were used to extract the cyanobacteria blooms, then the intensity of cyanobacteria blooms extracted was divided into three levels. Furthermore, the two extraction methods were compared, and the distribution of cyanobacteria blooms in Chaohu Lake were analyzed. The research results show that: (1) the thresholds and grading thresholds determined for NDVI method and FAI method in this workcan effectively extract the cyanobacteria blooms in Chaohu Lake, (2) compared with NDVI method, FAI method can reduce the influence of clouds on the extraction accuracy, (3) the eutrophication in the western half of Chaohu Lake and its coastal waters has been serious, and the eutrophication in the eastern half of the Chaohu Lake is becoming serious. The extraction thresholds and classification thresholds of cyanobacteria blooms determined in this paper not only provide method support for the treatment and early warning of cyanobacteria blooms in Chaohu Lake, but also provide reference for remote sensing monitoring of cyanobacteria blooms in other lakes.

Key words: cyanobacteria bloom, floating algae index, normalized difference vegetation index, Chaohu Lake; threshold

中图分类号: