大气与环境光学学报 ›› 2022, Vol. 17 ›› Issue (1): 65-91.
田 雨1, 潘小乐1∗, 姚维杰1;2, 刘 航1, 张宇婷1;2, 雷山东1;2, 孙业乐1;2;3, 李 杰1, 辛金元1, 曹军骥1, 王自发1;2;3
收稿日期:
2021-09-29
修回日期:
2021-10-18
出版日期:
2022-01-28
发布日期:
2022-01-28
通讯作者:
E-mail: panxiaole@mail.iap.ac.cn
E-mail:panxiaole@mail.iap.ac.cn
作者简介:
田 雨 (1997 - ), 女, 山东威海人, 博士, 主要从事大气沙尘气溶胶理化特性方面的研究。 E-mail: tianyu@mail.iap.ac.cn
基金资助:
TIAN Yu1, PAN Xiaole1∗, YAO Weijie1;2, LIU Hang1, ZHANG Yuting1;2, LEI Shandong1;2, SUN Yele1;2;3, LI Jie1, XIN Jinyuan1, CAO Junji1, WANG Zifa1;2;3
Received:
2021-09-29
Revised:
2021-10-18
Published:
2022-01-28
Online:
2022-01-28
Contact:
Le XiaoPan
E-mail:panxiaole@mail.iap.ac.cn
摘要: 大气中的沙尘气溶胶颗粒物会通过与太阳辐射相互作用、参与云的形成过程等, 对气候系统产生强烈影响。 对流层中的沙尘气溶胶通常是含有各种粒子成分的不均匀混合物, 只有通过详细了解单个沙尘粒子的理化特性才能 充分认识其对气候的影响效应。基于此, 对过去 20 年基于光学方法对大气沙尘气溶胶观测分析的研究进行了全面的 综述。回顾了利用电子显微镜、激光雷达以及单颗粒质谱等光学技术的研究成果, 简要介绍了基于扫描电镜和能谱、 偏光特性、非对称因子等的观测分析技术, 并讨论其优缺点; 总结了沙尘气溶胶形貌、混合态特征研究, 讨论其参与大 气物理化学过程的主要方式; 讨论了污染沙尘的光学性质、吸湿特性及成核能力, 这些特性都对气候变化和预测有重 要影响。大气中的沙尘气溶胶是复杂多样的, 如何将精确的单粒子分析技术和快速响应的在线检测技术结合将是未 来大气探测的研究重点, 这些研究成果也将进一步扩展到气溶胶的环境和气候影响研究, 以及人类健康风险评估中。
中图分类号:
田 雨, 潘小乐∗, 姚维杰, 刘 航, 张宇婷, 雷山东, 孙业乐, 李 杰, 辛金元, 曹军骥, 王自发, . 基于颗粒物光学检测技术的大气沙尘气溶胶 形貌、混合态研究进展[J]. 大气与环境光学学报, 2022, 17(1): 65-91.
TIAN Yu, PAN Xiaole∗, YAO Weijie, LIU Hang, ZHANG Yuting, LEI Shandong, SUN Yele, LI Jie, XIN Jinyuan, CAO Junji, WANG Zifa, . Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65-91.
[1] | Shao Y P, Klose M, Wyrwoll K H. Recent global dust trend and connections to climate forcing [J]. Journal of Geophysical |
Research: Atmospheres, 2013, 118(19): 11107-11118. | |
[2] | Zhang X L, Zhao L J, Tong D, et al. A systematic review of global desert dust and associated human health effects [J]. |
Atmosphere, 2016, 7(12): 158. | |
[3] | Zheng S, Pozzer A, Cao C X, et al. Long-term (2001-2012) concentrations of fine particulate matter (PM2:5) and the impact on |
human health in Beijing, China [J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5715-5725. | |
[4] | Ramana M V, Ramanathan V, Feng Y, et al. Warming influenced by the ratio of black carbon to sulphate and the black-carbon |
source [J]. Nature Geoscience, 2010, 3(8): 542-545. | |
[5] | Shi G Y, Zhao S X. Several scientific issues of studies on the dust storms [J]. Chinese Journal of Atmospheric Sciences, 2003, |
27 | (4): 591-606. |
石广玉, 赵思雄. 沙尘暴研究中的若干科学问题 [J]. 大气科学, 2003, 27(4): 591-606. | |
[6] | Wang M X, Zhang R J. Frontier of atmospheric aerosols researches [J]. Climatic and Environmental Research, 2001, 6(1): |
11 | 9-124. |
王明星, 张仁健. 大气气溶胶研究的前沿问题 [J]. 气候与环境研究, 2001, 6(1): 119-124. | |
[7] | Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China: Spatial/temporal variability, chemical |
signature, regional haze distribution and comparisons with global aerosols [J]. Atmospheric Chemistry and Physics, 2012, | |
12 | (2): 779-799. |
[8] | Uno I, Eguchi K, Yumimoto K, et al. Asian dust transported one full circuit around the globe [J]. Nature Geoscience, 2009, |
2( | 8): 557-560. |
[9] | Zhang X X, Sharratt B, Liu L Y, et al. East Asian dust storm in May 2017: Observations, modelling, and its influence on the |
Asia-Pacific region [J]. Atmospheric Chemistry and Physics, 2018, 18(11): 8353-8371. | |
[10] | Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation [J]. |
Journal of Geophysical Research: Atmospheres, 1997, 102(D23): 28041-28047. | |
[11] | Martin R V, Jacob D J, Yantosca R M, et al. Global and regional decreases in tropospheric oxidants from photochemical effects |
of aerosols [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D3): 4097. | |
[12] | Archer D, Winguth A, Lea D, et al. What caused the glacial/interglacial atmospheric pCO2 cycles? [J]. Reviews of Geophysics, |
20 | 00, 38(2): 159-189. |
[13] | Sand M, Samset B H, Balkanski Y, et al. Aerosols at the Poles: An AeroCom Phase II multi-model evaluation [J]. Atmospheric |
Chemistry and Physics Discussions, 2017: 1-35. | |
[14] | Coopman Q, Garrett T J, Riedi J, et al. Effects of long-range aerosol transport on the microphysical properties of low-level |
liquid clouds in the Arctic [J]. Atmospheric Chemistry and Physics, 2016, 16(7): 4661-4674. | |
[15] | Liu X, Shi X, Zhang K, et al. Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere |
Model CAM5 [J]. Atmospheric Chemistry and Physics, 2012, 12(24): 12061-12079. | |
[16] | Tobo Y, Zhang D, Matsuki A, et al. Asian dust particles converted into aqueous droplets under remote marine atmospheric |
conditions [J]. PNAS, 2010, 107(42): 17905-17910. | |
[17] | Takemura T. Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model [J]. |
Journal of Geophysical Research: Atmospheres, 2005, 110(D2): D02202. | |
[18] | Yang X, Zhao C F, Zhou L J, et al. Distinct impact of different types of aerosols on surface solar radiation in China [J]. Journal |
of Geophysical Research: Atmospheres, 2016, 121(11): 6459-6471. | |
[19] | Dunion J P, Velden C S. The impact of the Saharan air layer on Atlantic tropical cyclone activity [J]. Bulletin of the American |
Meteorological Society, 2004, 85(3): 353-366. | |
[20] | Grousset F E, Ginoux P, Bory A, et al. Case study of a Chinese dust plume reaching the French Alps [J]. Geophysical Research |
Letters, 2003, 30(6): 1277. | |
[21] | Huang Z W, Huang J P, Hayasaka T, et al. Short-cut transport path for Asian dust directly to the Arctic: A case study [J]. |
Environmental Research Letters, 2015, 10(11): 114018. | |
[22] | Takemura T, Uno I, Nakajima T, et al. Modeling study of long-range transport of Asian dust and anthropogenic aerosols from |
East Asia [J]. Geophysical Research Letters, 2002, 29(24): 11. | |
[23] | Jickells T D, An Z S, Andersen K K, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate |
[J] | Science, 2005, 308(5718): 67-71. |
[24] | Goudie A S. Desert dust and human health disorders [J]. Environment International, 2014, 63: 101-113. |
[25] | Griffin D W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health [J]. Clinical |
Microbiology Reviews, 2007, 20(3): 459-477. | |
[26] | Longueville F, Ozer P, Doumbia S, et al. Desert dust impacts on human health: An alarming worldwide reality and a need for |
studies in West Africa [J]. International Journal of Biometeorology, 2013, 57(1): 1-19. | |
[27] | Kubilay N, Cokacar T, Oguz T. Optical properties of mineral dust outbreaks over the northeastern Mediterranean [J]. Journal |
of Geophysical Research: Atmospheres, 2003, 108(D21): 4666. | |
[28] | Denjean C, Cassola F, Mazzino A, et al. Size distribution and optical properties of mineral dust aerosols transported in the |
western Mediterranean [J]. Atmospheric Chemistry and Physics Discussions, 2015, 15(15): 21607-21669. | |
[29] | Denjean C, Formenti P, Desboeufs K, et al. Size distribution and optical properties of African mineral dust after intercontinental |
transport [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(12): 7117-7138. | |
[30] | Zhang X Y, Wang Y Q, Zhang X C, et al. Aerosol monitoring at multiple locations in China: Contributions of EC and dust to |
aerosol light absorption [J]. Tellus B: Chemical and Physical Meteorology, 2008, 60(4): 647-656. | |
[31] | Seinfeld J H, Carmichael G R, Arimoto R, et al. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust |
and pollution [J]. Bulletin of the American Meteorological Society, 2004, 85(3): 367-380. | |
[32] | Koehler K A, Kreidenweis S M, DeMott P J, et al. Laboratory investigations of the impact of mineral dust aerosol on cold |
cloud formation [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11955-11968. | |
[33] | Koehler K A, Kreidenweis S M, DeMott P J, et al. Hygroscopicity and cloud droplet activation of mineral dust aerosol [J]. |
Geophysical Research Letters, 2009, 36(8): L08805. | |
[34] | Kaufman Y J, Tanre D, Boucher O. A satellite view of aerosols in the climate system [J]. ´ Nature, 2002, 419(6903): 215-223. |
[35] | Tang M J, Huang X, Lu K D, et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation |
capacity [J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11727-11777. | |
[36] | Gu W J, Li Y J, Zhu J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using |
a commercial vapor sorption analyzer [J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832. | |
[37] | Farmer D K, Cappa C D, Kreidenweis S M. Atmospheric processes and their controlling influence on cloud condensation |
nuclei activity [J]. Chemical Reviews, 2015, 115(10): 4199-4217. | |
[38] | Liu Y J, Zhu T, Zhao D F, et al. Investigation of the hygroscopic properties of Ca(NO3)2 and internally mixed Ca(NO3)2/CaCO3 |
particles by micro-Raman spectrometry [J]. Atmospheric Chemistry and Physics, 2008, 8(23): 7205-7215. | |
[39] | Sullivan R C, Moore M J K, Petters M D, et al. Effect of chemical mixing state on the hygroscopicity and cloud nucleation |
properties of calcium mineral dust particles [J]. Atmospheric Chemistry and Physics, 2009, 9(10): 3303-3316. | |
[40] | Wang X, Huang J P, Zhang R D, et al. Surface measurements of aerosol properties over northwest China during ARM China |
20 | 08 deployment [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D7): D00K27. |
[41] | Lee M C, Choi W. Solid phase photocatalytic reaction on the soot/TiO2 interface: The role of migrating OH radicals [J]. The |
Journal of Physical Chemistry B, 2002, 106(45): 11818-11822. | |
[42] | Park J S, Choi W. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2 [J]. Langmuir, 2004, 20(26): 11523- |
11 | 527. |
[43] | Ma Q X, Liu Y C, He H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on γ-alumina [J]. The Journal |
of Physical Chemistry A, 2008, 112(29): 6630-6635. | |
[44] | Zhang R Y, Wang G H, Guo S, et al. Formation of urban fine particulate matter [J]. Chemical Reviews, 2015, 115(10): |
38 | 03-3855. |
[45] | Li G, Bei N, Cao J, et al. A possible pathway for rapid growth of sulfate during haze days in China [J]. Atmospheric Chemistry |
and Physics, 2017, 17(5): 3301-3316. | |
[46] | Dupart Y, King S M, Nekat B, et al. Mineral dust photochemistry induces nucleation events in the presence of SO2 [J]. |
Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 20842-20847. | |
[47] | Nie W, Ding A J, Wang T, et al. Polluted dust promotes new particle formation and growth [J]. Scientific Reports, 2014, 4: |
6634. | |
[48] | Posfai M, Buseck P R. Nature and climate e ´ ffects of individual tropospheric aerosol particles [J]. Annual Review of Earth and |
Planetary Sciences, 2010, 38(1): 17-43. | |
[49] | Li W J, Sun J X, Xu L, et al. A conceptual framework for mixing structures in individual aerosol particles [J]. Journal of |
Geophysical Research: Atmospheres, 2016, 121(22): 13784-13798. | |
[50] | Laskin A, Iedema M J, Ichkovich A, et al. Direct observation of completely processed calcium carbonate dust particles [J]. |
Faraday Discussions, 2005, 130: 453-468. | |
[51] | Zhang D Z, Iwasaka Y, Shi G Y, et al. Separated status of the natural dust plume and polluted air masses in an Asian dust storm |
event at coastal areas of China [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D6): D06302. | |
[52] | Li W J, Shao L Y. Observation of nitrate coatings on atmospheric mineral dust particles [J]. Atmospheric Chemistry and |
Physics, 2009, 9(6): 1863-1871. | |
[53] | Li W J, Shao L Y, Zhang D Z, et al. A review of single aerosol particle studies in the atmosphere of East Asia: Morphology, |
mixing state, source, and heterogeneous reactions [J]. Journal of Cleaner Production, 2016, 112: 1330-1349. | |
[54] | Riemer N, West M. Quantifying aerosol mixing state with entropy and diversity measures [J]. Atmospheric Chemistry and |
Physics, 2013, 13(22): 11423-11439. | |
[55] | Winker D M, Vaughan M A, Omar A, et al. Overview of the CALIPSO mission and CALIOP data processing algorithms [J]. |
Journal of Atmospheric and Oceanic Technology, 2009, 26(11): 2310-2323. | |
[56] | Shimizu A. Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACEAsia [J]. Journal of Geophysical Research Atmospheres, 2004, 109(D19): D19S17. |
[57] | Burton S P, Ferrare R A, Hostetler C A, et al. Aerosol classification using airborne high spectral resolution lidar measurementsmethodology and examples [J]. Atmospheric Measurement Techniques, 2012, 5(1): 73-98. |
[58] | Wu K Y, Hou W Z, Shi Z, et al. Research progress of aerosol remote sensing retrieval algorithm based on satellite multi-angle |
observation [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 283-298. | |
吴孔逸, 侯伟真, 史 正, 等. 基于卫星多角度观测的气溶胶遥感反演算法研究进展 [J]. 大气与环境光学学报, 2021, 16(4): | |
28 | 3-298. |
[59] | Yin Z P, Yi F, Wang W, et al. Investigation of entrainment of transported dust into local planetary boundary layer with |
polarization lidar [J]. Journal of Atmospheric and Environmental Optics, 2021, 16(4): 299-306. | |
殷振平, 易 帆, 王 威, 等. 基于偏振激光雷达对远距离传输沙尘在局地混合过程的观测研究 [J]. 大气与环境光学学报, | |
20 | 21, 16(4): 299-306. |
[60] | Bohren C F, Huffman D R. Absorption and Scattering of Light by Small Particles [M]. New York: Wiley, 1983. |
[61] | Baumgardner D, Newton R, Kramer M, ¨ et al. The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next |
generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals [J]. Atmospheric Research, 2014, | |
14 | 2: 2-14. |
[62] | Haarig M, Ansmann A, Gasteiger J, et al. Dry versus wet marine particle optical properties: RH dependence of depolarization |
ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE [J]. Atmospheric Chemistry | |
and Physics, 2017, 17(23): 14199-14217. | |
[63] | Shimizu A, Nishizawa T, Jin Y, et al. Evolution of a lidar network for tropospheric aerosol detection in East Asia [J]. Optical |
Engineering, 2016, 56(3): 031219. | |
[64] | Sugimoto N, Matsui I, Shimizu A, et al. Lidar network observations of tropospheric aerosols [C]. Proceedings SPIE 7153, |
Lidar Remote Sensing for Environmental Monitoring IX, Noumea, New Caledonia. 2008, 7153: 43-55. | |
[65] | Hasekamp O P, Litvinov P, Butz A. Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements [J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D14): D14204. |
[66] | Lacagnina C, Hasekamp O P, Torres O. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations |
[J] | Journal of Geophysical Research: Atmospheres, 2017, 122(4): 2366-2388. |
[67] | Herman M. Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle |
model [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S02. | |
[68] | Cesana G, Chepfer H, Winker D, et al. Using in situ airborne measurements to evaluate three cloud phase products derived |
from CALIPSO [J]. Journal of Geophysical Research: Atmospheres, 2016, 121(10): 5788-5808. | |
[69] | Venkata S, Reagan J. Aerosol retrievals from CALIPSO lidar ocean surface returns [J]. Remote Sensing, 2016, 8(12): 1006. |
[70] | Sugimoto N, Matsui I, Shimizu A, et al. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with |
a two-wavelength polarization lidar on board the research vessel Mirai [J]. Geophysical Research Letters, 2002, 29(19): 1901. | |
[71] | Uno I, Yumimoto K, Shimizu A, et al. 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust |
model [J]. Geophysical Research Letters, 2008, 35(6): L06803. | |
[72] | Huang J P, Minnis P, Chen B, et al. Long-range transport and vertical structure of Asian dust from CALIPSO and surface |
measurements during PACDEX [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D23212. | |
[73] | Itahashi S, Yumimoto K, Uno I, et al. Structure of dust and air pollutant outflow over East Asia in the spring [J]. Geophysical |
Research Letters, 2010, 37(20): L20806. | |
[74] | Liu Z Y, Vaughan M A, Winker D M, et al. Use of probability distribution functions for discriminating between cloud and |
aerosol in lidar backscatter data [J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D15): D15202. | |
[75] | Liu Z Y, Vaughan M, Winker D, et al. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial |
assessment of performance [J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1198-1213. | |
[76] | Omar A H. Development of global aerosol models using cluster analysis of aerosol robotic network (AERONET) measurements |
[J] | Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S14. |
[77] | Young S A, Vaughan M A. The retrieval of profiles of particulate extinction from cloud-aerosol lidar infrared pathfinder |
satellite observations (CALIPSO) data: Algorithm description [J]. Journal of Atmospheric and Oceanic Technology, 2009, | |
26 | (6): 1105-1119. |
[78] | Murayama T, Okamoto H, Kaneyasu N, et al. Application of lidar depolarization measurement in the atmospheric boundary |
layer: Effects of dust and sea-salt particles [J]. Journal of Geophysical Research: Atmospheres, 1999, 104(D24): 31781-31792. | |
[79] | Murayama T, Müller D, Wada K, et al. Characterization of Asian dust and Siberian smoke with multi-wavelength Raman lidar |
over Tokyo, Japan in spring 2003 [J]. Geophysical Research Letters, 2004, 31(23): L23103. | |
[80] | Hara Y, Nishizawa T, Sugimoto N, et al. Optical properties of mixed aerosol layers over Japan derived with multi-wavelength |
Mie-Raman lidar system [J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 188: 20-27. | |
[81] | Nishizawa T, Sugimoto N, Matsui I, et al. Ground-based network observation using Mie-Raman lidars and multi-wavelength |
Raman lidars and algorithm to retrieve distributions of aerosol components [J]. Journal of Quantitative Spectroscopy and | |
Radiative Transfer, 2017, 188: 79-93. | |
[82] | Kim Y S. Dust particles in the free atmosphere over desert areas on the Asian continent: Measurements from summer 2001 |
to summer 2002 with balloon-borne optical particle counter and lidar, Dunhuang, China [J]. Journal of Geophysical Research: | |
Atmospheres, 2004, 109(D19): D19S26. | |
[83] | Mamouri R E, Ansmann A. Fine and coarse dust separation with polarization lidar [J]. Atmospheric Measurement Techniques, |
20 | 14, 7(11): 3717-3735. |
[84] | Atkinson D E, Sassen K, Hayashi M, et al. Aerosol properties over Interior Alaska from lidar, DRUM Impactor sampler, and |
OPC-sonde measurements and their meteorological context during ARCTAS-A, April 2008 [J]. Atmospheric Chemistry and | |
Physics, 2013, 13(3): 1293-1310. | |
[85] | Nott G J, Duck T J, Doyle J G, et al. A remotely operated lidar for aerosol, temperature, and water vapor profiling in the high |
arctic [J]. Journal of Atmospheric and Oceanic Technology, 2012, 29(2): 221-234. | |
[86] | Bourassa A E, Degenstein D A, Elash B J, et al. Evolution of the stratospheric aerosol enhancement following the eruptions |
of Okmok and Kasatochi: Odin-OSIRIS measurements [J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D2): | |
D00L03. | |
[87] | O’Neill N T, Perro C, Saha A, et al. Properties of Sarychev sulphate aerosols over the Arctic [J]. Journal of Geophysical |
Research: Atmospheres, 2012, 117(D4): D04203. | |
[88] | Ancellet G, Pelon J, Blanchard Y, et al. Transport of aerosol to the Arctic: Analysis of CALIOP and French aircraft data during |
the spring 2008 POLARCAT campaign [J]. Atmospheric Chemistry and Physics, 2014, 14(16): 8235-8254. | |
[89] | Granados-Munoz M J, Navas-Guzm ˜ án F, Guerrero-Rascado J L, et al. Profiling of aerosol microphysical properties at several |
EARLINET/AERONET sites during July 2012 ChArMEx/EMEP campaign [J]. Atmospheric Chemistry and Physics, 2015, | |
15 | (22): 32831-32887. |
[90] | Tesche M, Ansmann A, Muller D, ¨ et al. Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 [J]. Journal of Geophysical Research: |
Atmospheres, 2009, 114(D13): D13202. | |
[91] | Di Pierro M, Jaegle L, Anderson T L. Satellite observations of aerosol transport from East Asia to the Arctic: Three case ´ |
studies [J]. Atmospheric Chemistry and Physics, 2011, 11(5): 2225-2243. | |
[92] | de Villiers R A, Ancellet G, Pelon J, et al. Airborne measurements of aerosol optical properties related to early spring transport |
of mid-latitude sources into the Arctic [J]. Atmospheric Chemistry and Physics, 2010, 10(11): 5011-5030. | |
[93] | Adachi K, Buseck P R. Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere [J]. Atmospheric Environment, 2015, 100: 1-9. |
[94] | Wang Z Z, Liu B, Wang B X, et al. Experimental determination of the calibration factor of polarization-Mie lidar [J]. Journal |
of Atmospheric and Environmental Optics, 2009, 4(6): 414-420. | |
王珍珠, 刘 博, 王邦新, 等. PML 偏振激光雷达定标因子实验方法确定 [J]. 大气与环境光学学报, 2009, 4(6): 414-420. | |
[95] | Sugimoto N, Lee C H. Characteristics of dust aerosols inferred from lidar depolarization measurements at two wavelengths [J]. |
Applied Optics, 2006, 45(28): 7468-7474. | |
[96] | Pan X L, Ge B Z, Wang Z, et al. Synergistic effect of water-soluble species and relative humidity on morphological changes |
in aerosol particles in the Beijing megacity during severe pollution episodes [J]. Atmospheric Chemistry and Physics, 2019, | |
19 | (1): 219-232. |
[97] | Sugimoto N, Nishizawa T, Shimizu A, et al. Detection of internally mixed Asian dust with air pollution aerosols using a |
polarization optical particle counter and a polarization-sensitive two-wavelength lidar [J]. Journal of Quantitative Spectroscopy | |
and Radiative Transfer, 2015, 150: 107-113. | |
[98] | Omar A H, Winker D M, Vaughan M A, et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm |
[J] | Journal of Atmospheric and Oceanic Technology, 2009, 26(10): 1994-2014. |
[99] | Li R, Hu Y, Li L, et al. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes |
in the summer of urban Beijing [J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5079-5093. | |
[100] | Xiang Y, Liu J G, Zhang T S, et al. Uncertainty factors of aerosol optical properties inversion by lidar [J]. Laser & Optoelectronics Progress, 2018, 55(9): 092801. |
[101] | Bundke U, Nillius B, Jaenicke R, et al. The fast Ice Nucleus chamber FINCH [J]. Atmospheric Research, 2008, 90(2-4): |
18 | 0-186. |
[102] | Schnaiter M, Büttner S, Mohler O, ¨ et al. Influence of particle size and shape on the backscattering linear depolarisation ratio of |
small ice crystals-cloud chamber measurements in the context of contrail and cirrus microphysics [J]. Atmospheric Chemistry | |
and Physics, 2012, 12(21): 10465-10484. | |
[103] | Lack D A, Langridge J M, Bahreini R, et al. Brown carbon and internal mixing in biomass burning particles [J]. Proceedings |
of the National Academy of Sciences of the United States of America, 2012, 109(37): 14802-14807. | |
[104] | Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown |
spectroscopy [J]. Aerosol Science and Technology, 2011, 45(11): 1305-1318. | |
[105] | Cappa C D, Zhang X, Russell L M, et al. Light absorption by ambient black and brown carbon and its dependence on black |
carbon coating state for two california, USA, cities in winter and summer [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 19, 124(3): 1550-1577. |
[106] | Zhang X L, Kim H, Parworth C L, et al. Optical properties of wintertime aerosols from residential wood burning in Fresno, |
CA: Results from DISCOVER-AQ 2013 [J]. Environmental Science & Technology, 2016, 50(4): 1681-1690. | |
[107] | Miyakawa T, Takeda N, Koizumi K, et al. A New laser induced incandescence-mass spectrometric analyzer (LII-MS) for |
online measurement of aerosol composition classified by black carbon mixing state [J]. Aerosol Science and Technology, | |
20 | 14, 48(8): 853-863. |
[108] | Taketani F, Kanaya Y, Nakamura T, et al. Analysis of the mixing state of airborne particles using a tandem combination of |
laser-induced fluorescence and incandescence techniques [J]. Journal of Aerosol Science, 2015, 87: 102-110. | |
[109] | Metcalf A R, Loza C L, Coggon M M, et al. Secondary organic aerosol coating formation and evaporation: Chamber studies |
using black carbon seed aerosol and the single-particle soot photometer [J]. Aerosol Science and Technology, 2013, 47(3): | |
32 | 6-347. |
[110] | Taketani F, Miyakawa T, Takashima H, et al. Shipborne observations of atmospheric black carbon aerosol particles over the |
Arctic Ocean, Bering Sea, and North Pacific Ocean during September 2014 [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 16, 121(4): 1914-1921. |
[111] | Xie C, Xu W, Wang J, et al. Light absorption enhancement of black carbon in urban Beijing in summer [J]. Atmospheric |
Environment, 2019, 213: 499-504. | |
[112] | Tian Y, Pan X L, Wang Z, et al. Transport patterns, size distributions, and depolarization characteristics of dust particles in |
east Asia in spring 2018 [J]. Journal of Geophysical Research: Atmospheres, 2020, 125(16): e2019JD031752. | |
[113] | Pan X L, Uno I, Hara Y, et al. Polarization properties of aerosol particles over western Japan: Classification, seasonal variation, |
and implications for air quality [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 9863-9873. | |
[114] | Yumimoto K, Uno I, Pan X, et al. Inverse modeling of asian dust emissions with POPC observations: A TEMM dust sand |
storm 2014 case study [J]. SOLA, 2017, 13: 31-35. | |
[115] | Glen A, Brooks S D. A new method for measuring optical scattering properties of atmospherically relevant dusts using the |
cloud and aerosol spectrometer with polarization (CASPOL) [J]. Atmospheric Chemistry and Physics, 2013, 13(3): 1345-1356. | |
[116] | Baumgardner D, Jonsson H, Dawson W, et al. The cloud, aerosol and precipitation spectrometer: A new instrument for cloud |
investigations [J]. Atmospheric Research, 2001, 59-60: 251-264. | |
[117] | Glen A, Brooks S D. Single particle measurements of the optical properties of small ice crystals and heterogeneous ice nuclei |
[J] | Aerosol Science and Technology, 2014, 48(11): 1123-1132. |
[118] | Amsler P, Stetzer O, Schnaiter M, et al. Ice crystal habits from cloud chamber studies obtained by in-line holographic |
microscopy related to depolarization measurements [J]. Applied Optics, 2009, 48(30): 5811-5822. | |
[119] | Redding B, Panb Y, Wangbc C, et al. Polarization resolved angular optical scattering of aerosol particles [C]. Conference on |
Advanced Environmental, Chemical, and Biological Sensing Technologies XI, MAY 05-06, 2014, Baltimore, MD, USA. 2014, | |
91 | 06: 91060F. |
[120] | Kobayashi H, Hayashi M, Shiraishi K, et al. Development of a polarization optical particle counter capable of aerosol type |
classification [J]. Atmospheric Environment, 2014, 97: 486-492. | |
[121] | Kaye P, Hirst E, Foot V, et al. A low-cost multichannel aerosol fluorescence sensor for networked deployment [C]. European |
Symposium on Optics and Photonics for Defence and Security. Proc SPIE 5617, Optically Based Biological and Chemical | |
Sensing for Defence, London, United Kingdom. 2004, 5617: 388-398. | |
[122] | Kaye P, Stanley W R, Hirst E, et al. Single particle multichannel bio-aerosol fluorescence sensor [J]. Optics Express, 2005, |
13 | (10): 3583-3593. |
[123] | Foot V E, Kaye P H, Stanley W R, et al. Low-cost real-time multiparameter bio-aerosol sensors [C]. SPIE Security and Defence. Proc SPIE 7116, Optically Based Biological and Chemical Detection for Defence IV, Cardiff, Wales, United Kingdom. |
20 | 08, 7116: 78-89. |
[124] | Whitehead J D, Darbyshire E, Brito J, et al. Biogenic cloud nuclei in the central Amazon during the transition from wet to dry |
season [J]. Atmospheric Chemistry and Physics, 2016, 16(15): 9727-9743. | |
[125] | Gabey A M. Laboratory and Field Characterisation of Fluorescent and Primary Biological Aerosol Particles [D]. Manchester: |
The University of Manchester, 2011. | |
[126] | Crawford I, Ruske S, Topping D O, et al. Evaluation of hierarchical agglomerative cluster analysis methods for discrimination |
of primary biological aerosol [J]. Atmospheric Measurement Techniques, 2015, 8(11): 4979-4991. | |
[127] | Herman J R, Bhartia P K, Torres O, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data [J]. Journal |
of Geophysical Research: Atmospheres, 1997, 102(D14): 16911-16922. | |
[128] | Husar R B, Prospero J M, Stowe L L. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very |
high resolution radiometer optical thickness operational product [J]. Journal of Geophysical Research: Atmospheres, 1997, | |
10 | 2(D14): 16889-16909. |
[129] | Prospero J M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of |
the southeastern United States [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, | |
96 | (7): 3396-3403. |
[130] | Kandler K, SchüTz L, Deutscher C, et al. Size distribution, mass concentration, chemical and mineralogical composition and |
derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006 [J]. Tellus B: Chemical | |
and Physical Meteorology, 2009, 61(1): 32-50. | |
[131] | Reid E A, Reid J S, Meier M M, et al. Characterization of African dust transported to Puerto Rico by individual particle and |
size segregated bulk analysis [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D19): 8591. | |
[132] | Wagner R, Ajtai T, Kandler K, et al. Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: |
A laboratory study [J]. Atmospheric Chemistry and Physics, 2012, 12(5): 2491-2512. | |
[133] | Chou C, Formenti P, Maille M, et al. Size distribution, shape, and composition of mineral dust aerosols collected during |
the African Monsoon Multidisciplinary Analysis Special Observation Period 0: Dust and Biomass-burning Experiment field | |
campaign in Niger, January 2006 [J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D00C10. | |
[134] | Haywood J M, Pelon J, Formenti P, et al. Overview of the Dust and Biomass-burning Experiment and African Monsoon |
Multidisciplinary Analysis Special Observing Period-0 [J]. Journal of Geophysical Research, 2008, 113: D00C17. | |
[135] | Okada K, Heintzenberg J, Kai K, et al. Shape of atmospheric mineral particles collected in three Chinese arid-regions [J]. |
Geophysical Research Letters, 2001, 28(16): 3123-3126. | |
[136] | Huang X, Yang P, Kattawar G, et al. Effect of mineral dust aerosol aspect ratio on polarized reflectance [J]. Journal of |
Quantitative Spectroscopy & Radiative Transfer, 2015, 151: 97-109. | |
[137] | Rocha-Lima A, Martins J V, Remer L A, et al. A detailed characterization of the Saharan dust collected during the Fennec |
campaign in 2011: In situ ground-based and laboratory measurements [J]. Atmospheric Chemistry and Physics, 2018, 18(2): | |
10 | 23-1043. |
[138] | Pan X L, Uno I, Wang Z, et al. Real-time observational evidence of changing Asian dust morphology with the mixing of heavy |
anthropogenic pollution [J]. Scientific Reports, 2017, 7: 335. | |
[139] | Sassen K, Khvorostyanov V I. Cloud effects from boreal forest fire smoke: Evidence for ice nucleation from polarization lidar |
data and cloud model simulations [J]. Environmental Research Letters, 2008, 3(2): 025006. | |
[140] | Seinfeld J H, Pandis S N, Noone K. Atmospheric chemistry and physics: From air pollution to climate change [J]. Physics |
Today, 1998, 51(10): 88-90. | |
[141] | Ginoux P. Effects of nonsphericity on mineral dust modeling [J]. Journal of Geophysical Research: Atmospheres, 2003, |
10 | 8(D2): 4052. |
[142] | Colarco P R. Determining the UV imaginary index of refraction of Saharan dust particles from total ozone mapping spectrometer data using a three-dimensional model of dust transport [J]. Journal of Geophysical Research: Atmospheres, 2002, |
10 | 7(D16): 4289. |
[143] | Binietoglou I, Basart S, Alados-Arboledas L, et al. A methodology for investigating dust model performance using synergistic |
EARLINET/AERONET dust concentration retrievals [J]. Atmospheric Measurement Techniques, 2015, 8(9): 3577-3600. | |
[144] | Seland Y, Iversen T, KirkevÅG A L F, et al. Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation |
of associated basic shortcomings [J]. Tellus A, 2008, 60(3): 459-491. | |
[145] | Dong X, Fu J S, Huang K, et al. Model development of dust emission and heterogeneous chemistry within the community |
multiscale air quality modeling system and its application over East Asia [J]. Atmospheric Chemistry and Physics, 2016, | |
16 | (13): 8157-8180. |
[146] | Coz E, Gomez-Moreno F J, Casuccio G S, ´ et al. Variations on morphology and elemental composition of mineral dust particles |
from local, regional, and long-range transport meteorological scenarios [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 10, 115(D12): D12204. |
[147] | Okada K, Kobayashi A, Iwasaka Y, et al. Features of individual Asian dust-storm particles collected at Nagoya, Japan [J]. |
Journal of the Meteorological Society of Japan Ser II, 1987, 65(3): 515-521. | |
[148] | Veghte D P, Freedman M A. Facile method for determining the aspect ratios of mineral dust aerosol by electron microscopy |
[J] | Aerosol Science and Technology, 2014, 48(7): 715-724. |
[149] | Jeong G Y, Nousiainen T. TEM analysis of the internal structures and mineralogy of Asian dust particles and the implications |
for optical modeling [J]. Atmospheric Chemistry and Physics, 2014, 14(14): 7233-7254. | |
[150] | Iwasaka Y. Importance of dust particles in the free troposphere over the Taklamakan Desert: Electron microscopic experiments of particles collected with a balloonborne particle impactor at Dunhuang, China [J]. Journal of Geophysical Research: |
Atmospheres, 2003, 108(D23): 8644. | |
[151] | Jung H J, Malek M A, Ryu J, et al. Speciation of individual mineral particles of micrometer size by the combined use of |
attenuated total reflectance-Fourier transform-infrared imaging and quantitative energy-dispersive electron probe X-ray microanalysis techniques [J]. Analytical Chemistry, 2010, 82(14): 6193-6202. | |
[152] | Laskin A. Heterogeneous chemistry of individual mineral dust particles with nitric acid: A combined CCSEM/EDX, ESEM, |
and ICP-MS study [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10208. | |
[153] | Bergin M H, Cass G R, Xu J, et al. Aerosol radiative, physical, and chemical properties in Beijing during June 1999 [J]. |
Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 17969-17980. | |
[154] | Shi Y, Chen J M, Hu D W, et al. Airborne submicron particulate (PM1) pollution in Shanghai, China: Chemical variability, formation/dissociation of associated semi-volatile components and the impacts on visibility [J]. Science of the Total Environment, |
20 | 14, 473/474: 199-206. |
[155] | Liang Q, Jaegle L, Hudman R C, ´ et al. Summertime influence of Asian pollution in the free troposphere over North America |
[J] | Journal of Geophysical Research: Atmospheres, 2007, 112(D12): D12S11. |
[156] | Pakkanen T A. Study of formation of coarse particle nitrate aerosol [J]. Atmospheric Environment, 1996, 30(14): 2475-2482. |
[157] | Galy-Lacaux C, Carmichael G R, Song C H, et al. Heterogeneous processes involving nitrogenous compounds and Saharan |
dust inferred from measurements and model calculations [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D12): | |
12 | 559-12578. |
[158] | Hanke M, Umann B, Uecker J, et al. Atmospheric measurements of gas-phase HNO3 and SO2 using chemical ionization mass |
spectrometry during the MINATROC field campaign 2000 on Monte Cimone [J]. Atmospheric Chemistry and Physics, 2003, | |
3( | 2): 417-436. |
[159] | Krueger B J, Grassian V H, Cowin J P, et al. Heterogeneous chemistry of individual mineral dust particles from different dust |
source regions: The importance of particle mineralogy [J]. Atmospheric Environment, 2004, 38(36): 6253-6261. | |
[160] | Ullerstam M, Johnson M S, Vogt R, et al. DRIFTS and Knudsen cell study of the heterogeneous reactivity of SO2 and NO2 on |
mineral dust [J]. Atmospheric Chemistry and Physics, 2003, 3(6): 2043-2051. | |
[161] | Ooki A, Uematsu M. Chemical interactions between mineral dust particles and acid gases during Asian dust events [J]. Journal |
of Geophysical Research: Atmospheres, 2005, 110(D3): D03201. | |
[162] | Vlasenko A, Sjogren S, Weingartner E, et al. Effect of humidity on nitric acid uptake to mineral dust aerosol particles [J]. |
Atmospheric Chemistry and Physics, 2006, 6(8): 2147-2160. | |
[163] | Usher C R, Michel A E, Grassian V H. Reactions on mineral dust [J]. Chemical Reviews, 2003, 103(12): 4883-4940. |
[164] | Fountoukis C, Nenes A. ISORROPIA II: A computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+- |
NH4+-Na+-SO42-NO3-Cl-H2O aerosols [J]. Atmospheric Chemistry and Physics, 2007, 7(17): 4639-4659. | |
[165] | Underwood G M, Song C H, Phadnis M, et al. Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A |
combined laboratory and modeling study [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18055-18066. | |
[166] | Goodman A L, Bernard E T, Grassian V H. Spectroscopic study of nitric acid and water adsorption on oxide particles: |
Enhanced nitric acid uptake kinetics in the presence of adsorbed water [J]. The Journal of Physical Chemistry A, 2001, 105(26): | |
64 | 43-6457. |
[167] | Levin Z, Ganor E, Gladstein V. The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean |
[J] | Journal of Applied Meteorology, 1996, 35(9): 1511-1523. |
[168] | Zhang X Y, Gong S L, Shen Z X, et al. Characterization of soil dust aerosol in China and its transport and distribution during |
20 | 01 ACE-Asia: 1. Network observations [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D9): 4261. |
[169] | Sullivan R C, Guazzotti S A, Sodeman D A, et al. Direct observations of the atmospheric processing of Asian mineral dust |
[J] | Atmospheric Chemistry and Physics, 2007, 7(5): 1213-1236. |
[170] | Fairlie T D, Jacob D J, Dibb J E, et al. Impact of mineral dust on nitrate, sulfate, and ozone in transpacific Asian pollution |
plumes [J]. Atmospheric Chemistry and Physics, 2010, 10(8): 3999-4012. | |
[171] | Sobanska S, Coeur C, Maenhaut W, et al. SEM-EDX characterisation of tropospheric aerosols in the Negev desert (Israel) [J]. |
Journal of Atmospheric Chemistry, 2003, 44(3): 299-322. | |
[172] | Matsuki A, Iwasaka Y, Shi G, et al. Morphological and chemical modification of mineral dust: Observational insight into the |
heterogeneous uptake of acidic gases [J]. Geophysical Research Letters, 2005, 32(22): L22806. | |
[173] | Okada K, Kai K J. Atmospheric mineral particles collected at Qira in the Taklamakan Desert, China [J]. Atmospheric Environment, 2004, 38(40): 6927-6935. |
[174] | Andreae M O, Charlson R J, Bruynseels F, et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols |
[J] | Science, 1986, 232(4758): 1620-1623. |
[175] | Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chemical Reviews, 2012, |
11 | 2(3): 1957-2011. |
[176] | Harris E, Sinha B, van Pinxteren D, et al. Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2 [J]. |
Science, 2013, 340(6133): 727-730. | |
[177] | Maahs H G. Kinetics and mechanism of the oxidation of S(IV) by ozone in aqueous solution with particular reference to SO2 |
conversion in nonurban tropospheric clouds [J]. Journal of Geophysical Research: Oceans, 1983, 88(C15): 10721-10732. | |
[178] | Ha Z Y, Chan C K. The water activities of MgCl2, Mg(NO3)2, MgSO4, and their mixtures [J]. Aerosol Science and Technology, |
19 | 99, 31(2/3): 154-169. |
[179] | Murphy D M, Cziczo D J, Froyd K D, et al. Single-particle mass spectrometry of tropospheric aerosol particles [J]. Journal of |
Geophysical Research: Atmospheres, 2006, 111(D23): D23S32. | |
[180] | Li X H, Zhao L J, Dong J L, et al. Confocal Raman studies of Mg(NO3)2 aerosol particles deposited on a quartz substrate: |
supersaturated structures and complicated phase transitions [J]. The Journal of Physical Chemistry B, 2008, 112(16): 5032- | |
5038. | |
[181] | Kelly J T. Thermodynamics of carbonates and hydrates related to heterogeneous reactions involving mineral aerosol [J]. Journal |
of Geophysical Research: Atmospheres, 2005, 110(D11): D11201. | |
[182] | Noble C A, Prather K A. Real-time measurement of correlated size and composition profiles of individual atmospheric aerosol |
particles [J]. Environmental Science & Technology, 1996, 30(9): 2667-2680. | |
[183] | Han J H, Hung H M, Martin S T. Size effect of hematite and corundum inclusions on the efflorescence relative humidities of |
aqueous ammonium nitrate particles [J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D10): 4086. | |
[184] | Kulmala M. How particles nucleate and grow [J]. Science, 2003, 302(5647): 1000-1001. |
[185] | Korhonen H, Napari I, Timmreck C, et al. Heterogeneous nucleation as a potential sulphate-coating mechanism of atmospheric mineral dust particles and implications of coated dust on new particle formation [J]. Journal of Geophysical Research: |
Atmospheres, 2003, 108(D17): 4546. | |
[186] | Falkovich A H, Ganor E, Levin Z, et al. Chemical and mineralogical analysis of individual mineral dust particles [J]. Journal |
of Geophysical Research: Atmospheres, 2001, 106(D16): 18029-18036. | |
[187] | Gao Y, Anderson J R, Hua X. Dust characteristics over the North Pacific observed through shipboard measurements during |
the ACE-Asia experiment [J]. Atmospheric Environment, 2007, 41(36): 7907-7922. | |
[188] | Strebel D E, Landis D R, Huemmrich K F, et al. The FIFE data publication experiment [J]. Journal of the Atmospheric |
Sciences, 1998, 55(7): 1277-1283. | |
[189] | Trochkine D. Mineral aerosol particles collected in Dunhuang, China, and their comparison with chemically modified particles |
collected over Japan [J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D23): 8642. | |
[190] | Tang X Y. Zhang Y H, Shao M. Chemistry of Atmosphere Environment. [M]. Beijing: Higher Education Press, 1990. |
唐孝炎, 张远航, 邵 敏. 大气环境化学 [M]. 北京: 高等教育出版社, 1990. | |
[191] | de Reus M, Dentener F, Thomas A, et al. Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: |
Indications for heterogeneous ozone destruction [J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15263- | |
15 | 275. |
[192] | Hanisch F, Crowley J N. Ozone decomposition on Saharan dust: An experimental investigation [J]. Atmospheric Chemistry |
and Physics, 2003, 3(1): 119-130. | |
[193] | Cwiertny D M, Young M A, Grassian V H. Chemistry and photochemistry of mineral dust aerosol [J]. Annual Review of |
Physical Chemistry, 2008, 59(1): 27-51. | |
[194] | Kulmala M, Vehkamaki H, Pet ¨ aj ¨ a T, ¨ et al. Formation and growth rates of ultrafine atmospheric particles: A review of observations [J]. Journal of Aerosol Science, 2004, 35(2): 143-176. |
[195] | Kulmala M, Maso M D, Makela J M, et al. On the formation, growth and composition of nucleation mode particles [J]. Tellus |
B, 2001, 53(4): 479-490. | |
[196] | Xiao H, Carmichael G R, Yang Z. A modeling evaluation of the impact of mineral aerosols on the particulate sulfate formation |
in East Asia [J]. Chinese Journal of Atmospheric Science, 1998, 22(3): 343-353. | |
肖 辉, Gregory R. Carmichael, Yang Zhang. 东亚地区沙尘气溶胶影响硫酸盐形成的模式评估 [J]. 大气科学, 1998, 22(3): | |
34 | 3-353. |
[197] | Martin L R and Good T W. Catalyzed oxidation of sulfur dioxide in solution: The iron-manganese synergism [J]. Atmospheric |
Environment. Part A. General Topics, 1991, 25(10): 2395-2399. | |
[198] | Urone P, Lutsep H, Noyes C M, et al. Static studies of sulfur dioxide reactions in air [J]. Environmental Science & Technology, |
19 | 68, 2(8): 611-618. |
[199] | He H, Wang Y, Ma Q, et al. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days [J]. |
Scientific Report, 2014, 4: 4172. | |
[200] | Nie W, Wang T, Xue L K, et al. Asian dust storm observed at a rural mountain site in Southern China: Chemical evolution and |
heterogeneous photochemistry [J]. Atmospheric Chemistry and Physics, 2012, 12(24): 11985-11995. | |
[201] | Ndour M, D’Anna B, George C, et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model |
simulations [J]. Geophysical Research Letters, 2008, 35(5): L05812. | |
[202] | Marc`ı G, Addamo M, Augugliaro V, et al. Photocatalytic oxidation of toluene on irradiated TiO2: Comparison of degradation |
performance in humidified air, in water and in water containing a zwitterionic surfactant [J]. Journal of Photochemistry and | |
Photobiology A: Chemistry, 2003, 160(1-2): 105-114. | |
[203] | Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry [J]. Chemical Reviews, |
20 | 12, 112(11): 5919-48. |
[204] | Monge M E, Rosenorn T, Favez O, et al. Alternative pathway for atmospheric particles growth [J]. Proceedings of the National |
Academy of Sciences of the United States of America, 2012, 109(18): 6840-6844. | |
[205] | Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489): |
47 | 6-479. |
[206] | Ndour M, Conchon P, D’Anna B, et al. Photochemistry of mineral dust surface as a potential atmospheric renoxification |
process [J]. Geophysical Research Letters, 2009, 36(5): L05816. | |
[207] | Styler S A, Donaldson D J. Photooxidation of atmospheric alcohols on laboratory proxies for mineral dust [J]. Environmental |
Science & Technology, 2011, 45(23): 10004-10012. | |
[208] | Colarco P R, Nowottnick E P, Randles C A, et al. Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate |
model: Sensitivity to dust particle shape and refractive index [J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): | |
75 | 3-786. |
[209] | Liu L P, Qian Y F. Effect of the shape of aerosol on its radiative characteristics [J]. Journal of Naijing University (Natural |
Sciences), 1996, 32(2): 316-321. | |
刘黎平, 钱永甫. 气溶胶粒子形状对其辐射特性影响的研究 [J]. 南京大学学报 (自然科学版), 1996, 32(2): 316-321. | |
[210] | DeMott P J, Sassen K, Poellot M R, et al. African dust aerosols as atmospheric ice nuclei [J]. Geophysical Research Letters, |
20 | 03, 30(14): 1732. |
[211] | van den Heever S C, Carrio G G, ´ et al. Impacts of nucleating aerosol on florida storms. Part I: Mesoscale simulations [J]. |
Journal of the Atmospheric Sciences, 2006, 63(7): 1752-1775. | |
[212] | Wang Y J, Huang J P, Wang T H. The influences of dust aerosols on cloud properties and radiative forcing in a sandstorm |
weather process [J]. Arid Meteorology, 2006, 24(3): 14-18. | |
王玉洁, 黄建平, 王天河. 一次沙尘暴过程中沙尘气溶胶对云物理量和辐射强迫的影响 [J]. 干旱气象, 2006, 24(3): | |
14 | -18. |
[213] | Jacobson M Z. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols [J]. Nature, 2001, |
40 | 9(6821): 695-697. |
[214] | Khalizov A F, Zhang R Y, Zhang D, et al. Formation of highly hygroscopic soot aerosols upon internal mixing with sulfuric |
acid vapor [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D5): D05208. | |
[215] | Luo Y F, Lu D R, He Q, et al. An analysis of direct solar radiation, visibility and aerosol optical depth in South China coastal |
area [J]. Climatic and Environmental Research, 2000, 5(1): 36-44. | |
罗云峰, 吕达仁, 何 晴, 等. 华南沿海地区太阳直接辐射、能见度及大气气溶胶变化特征分析 [J]. 气候与环境研究, | |
20 | 00, 5(1): 36-44. |
[216] | Mao J T, Zhang J H, Wang M H. Summary comment on research of atmospheric aerosl in China [J]. Acta Meteorologica |
Sinica, 2002, 60(5): 625-634. | |
毛节泰, 张军华, 王美华. 中国大气气溶胶研究综述 [J]. 气象学报, 2002, 60(5): 625-634. | |
[217] | Shi G Y, Wang B, Zhang H, et al. The radiative and climatic effects of atmospheric aerosols [J]. Chinese Journal of Atmospheric |
Sciences, 2008, 32(4): 826-840. | |
石广玉, 王 标, 张 华, 等. 大气气溶胶的辐射与气候效应 [J]. 大气科学, 2008, 32(4): 826-840. | |
[218] | Xu X D, Zhou X J, Shi X H. Spatial structure and scale characteristics of air pollution sources in urban communities [J]. |
Science in China, SerD, 2005, 35(Sup 1): 1-19. | |
徐祥德, 周秀骥, 施晓晖. 城市群落大气污染源影响的空间结构及尺度特征 [J]. 中国科学 (D 辑: 地球科学), 2005, 35(增 | |
刊1) | : 1-19. |
[219] | Shen Z B, Wei L. Radiative effects of atmospheric dust aerosol in northwest China [J]. Scientia Atmospherica Sinica, 2000, |
24 | (4): 541-548. |
沈志宝, 魏 丽. 我国西北大气沙尘气溶胶的辐射效应 [J]. 大气科学, 2000, 24(4): 541-548. | |
[220] | Tian L, Zhang W, Shi J S, et al. A preliminary study on scattering property of dust aerosol in Hexi Corridor [J]. Plateau |
Meteorology, 2010, 29(4): 1050-1057. | |
田 磊, 张 武, 史晋森, 等. 河西春季沙尘气溶胶粒子散射特性的初步研究 [J]. 高原气象, 2010, 29(4): 1050-1057. | |
[221] | Wang H, Shi G Y, Wang B, et al. The impacts of dust aerosol from deserts of China on the radiative heating rate over desert |
sources and the north Pacific region [J]. Chinese Journal of Atmospheric Sciences, 2007, 31(3): 515-526. | |
王 宏, 石广玉, 王 标, 等. 中国沙漠沙尘气溶胶对沙漠源区及北太平洋地区大气辐射加热的影响 [J]. 大气科学, 2007, | |
31 | (3): 515-526. |
[222] | Dubovik O, Holben B, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in |
worldwide locations [J]. Journal of the Atmospheric Sciences, 2002, 59(3): 590-608. | |
[223] | Ramanathan V, Crutzen P J, Lelieveld J, et al. Indian Ocean Experiment: An integrated analysis of the climate forcing and |
effects of the great Indo-Asian haze [J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D22): 28371-28398. | |
[224] | Nakajima T. Significance of direct and indirect radiative forcings of aerosols in the East China Sea region [J]. Journal of |
Geophysical Research: Atmospheres, 2003, 108(D23): 8658. | |
[225] | Sohn B J, Nakajima T, Chun H W, et al. More absorbing dust aerosol inferred from sky radiometer measurements at Anmyeon, |
Korea [J]. Journal of the Meteorological Society of Japan Ser II, 2007, 85(6): 815-823. | |
[226] | Kim D H, Sohn B J, Nakajima T, et al. Aerosol radiative forcing over east Asia determined from ground-based solar radiation |
measurements [J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D10): D10S22. | |
[227] | Khatri P, Takamura T, Shimizu A, et al. Observation of low single scattering albedo of aerosols in the downwind of the East |
Asian desert and urban areas during the inflow of dust aerosols [J]. Journal of Geophysical Research: Atmospheres, 2014, | |
11 | 9(2): 787-802. |
[228] | Tian P, Zhang L, Ma J, et al. Radiative absorption enhancement of dust mixed with anthropogenic pollution over East Asia |
[J] | Atmospheric Chemistry and Physics, 2018, 18(11): 7815-7825. |
[229] | Obregon M A, Pereira S, Salgueiro V, ´ et al. Aerosol radiative effects during two desert dust events in August 2012 over the |
Southwestern Iberian Peninsula [J]. Atmospheric Research, 2015, 153: 404-415. | |
[230] | Derimian Y, Leon J F, Dubovik O, ´ et al. Radiative properties of aerosol mixture observed during the dry season 2006 over |
M′Bour, Senegal (African Monsoon Multidisciplinary Analysis campaign) [J]. Journal of Geophysical Research: Atmospheres, | |
20 | 08, 113: D00C09. |
[231] | Bauer S E, Mishchenko M I, Lacis A A, et al. Do sulfate and nitrate coatings on mineral dust have important effects on |
radiative properties and climate modeling? [J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D6): D06307. | |
[232] | Murray B J, O’Sullivan D, Atkinson J D, et al. ChemInform abstract: Ice nucleation by particles immersed in supercooled |
cloud droplets [J]. ChemInform, 2012, 43(48). | |
[233] | Sullivan R C, Petters M D, DeMott P J, et al. Irreversible loss of ice nucleation active sites in mineral dust particles caused by |
sulphuric acid condensation [J]. Atmospheric Chemistry and Physics, 2010, 10(23): 11471-11487. | |
[234] | Chen L, Yin Y. A sensitivity study of the effect of dust aerosols on the development of ice-phase cloud processes [J]. Scientia |
Meteorologica Sinica, 2009, 29(2): 2208-2213. | |
陈 丽, 银 燕. 沙尘气溶胶对大气冰相过程发展的敏感性试验 [J]. 气象科学, 2009, 29(2): 2208-2213. | |
[235] | Targino A C, Krejci R, Noone K J, et al. Single particle analysis of ice crystal residuals observed in orographic wave clouds |
over Scandinavia during INTACC experiment [J]. Atmospheric Chemistry and Physics, 2006, 6(7): 1977-1990. | |
[236] | Atkinson J D, Murray B J, Woodhouse M T, et al. The importance of feldspar for ice nucleation by mineral dust in mixed-phase |
clouds [J]. Nature, 2013, 498(7454): 355-358. | |
[237] | Creamean J M, Suski K J, Rosenfeld D, et al. Dust and biological aerosols from the Sahara and Asia influence precipitation in |
the western U.S [J]. Science, 2013, 339(6127): 1572-1578. | |
[238] | Rosenfeld D, Yu X, Liu G H, et al. Glaciation temperatures of convective clouds ingesting desert dust, air pollution and smoke |
from forest fires [J]. Geophysical Research Letters, 2011, 38(21): L21804. | |
[239] | Kanji Z A, Abbatt J P D. The university of Toronto continuous flow diffusion chamber (UT-CFDC): A simple design for ice |
nucleation studies [J]. Aerosol Science and Technology, 2009, 43(7): 730-738. | |
[240] | Archuleta C M, DeMott P J, Kreidenweis S M. Ice nucleation by surrogates for atmospheric mineral dust and mineral |
dust/sulfate particles at cirrus temperatures [J]. Atmospheric Chemistry & Physics, 2005, 5: 2617-2634. | |
[241] | Field P R, Mohler O, Connolly P, ¨ et al. Some ice nucleation characteristics of Asian and Saharan desert dust [J]. Atmospheric |
Chemistry and Physics, 2006, 6(10): 2991-3006. | |
[242] | Yuan H, Zhuang G S, Rahn K A, et al. Composition and mixing of individual particles in dust and nondust conditions of North |
China, spring 2002 [J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D20): D20208. | |
[243] | Geng H, Hwang H, Liu X, et al. Investigation of aged aerosols in size-resolved Asian dust storm particles transported from |
Beijing, China, to Incheon, Korea, using low-Z particle EPMA [J]. Atmospheric Chemistry and Physics, 2014, 14(7): 3307- | |
3323. | |
[244] | Wang Q Z, Zhuang G S, Li J, et al. Mixing of dust with pollution on the transport path of Asian dust—Revealed from the |
aerosol over Yulin, the north edge of Loess Plateau [J]. Science of the Total Environment, 2011, 409(3): 573-581. | |
[245] | Hatch C D, Gierlus K M, Schuttlefield J D, et al. Water adsorption and cloud condensation nuclei activity of calcite and calcite |
coated with model humic and fulvic acids [J]. Atmospheric Environment, 2008, 42(22): 5672-5684. | |
[246] | Gustafsson R J, Orlov A, Badger C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral |
surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements [J]. Atmospheric Chemistry and | |
Physics, 2005, 5: 3415-3421. | |
[247] | Ma Q X, Liu Y C, Liu C, et al. Heterogeneous reaction of acetic acid on MgO, α-Al2O3, and CaCO3 and the effect on the |
hygroscopic behaviour of these particles [J]. Physical Chemistry Chemical Physics, 2012, 14(23): 8403-8409. | |
[248] | Tang M, Cziczo D J, Grassian V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud |
condensation, and ice nucleation [J]. Chemical Reviews, 2016, 116(7): 4205-4259. | |
[249] | Gibson E R, Hudson P K, Grassian V H. Aerosol chemistry and climate: Laboratory studies of the carbonate component of |
mineral dust and its reaction products [J]. Geophysical Research Letters, 2006, 33(13): L13811. | |
[250] | Zhang D, Shi G Y, Iwasaka Y, et al. Mixture of sulfate and nitrate in coastal atmospheric aerosols: Individual particle studies |
in Qingdao (36◦04′ N, 120◦21′ E), China [J]. Atmospheric Environment, 2000, 34(17): 2669-2679. | |
[251] | Seisel S, Borensen C, Vogt R, ¨ et al. Kinetics and mechanism of the uptake of N2O5 on mineral dust at 298 K [J]. Atmospheric |
Chemistry and Physics, 2005, 5(12): 3423-3432. | |
[252] | Tang M J, Thieser J, Schuster G, et al. Kinetics and mechanism of the heterogeneous reaction of N2O5 with mineral dust |
particles [J]. Physical Chemistry Chemical Physics, 2012, 14(24): 8551-61. | |
[253] | Tang I N, Fung K H. Hydration and Raman scattering studies of levitated microparticles: Ba(NO3)2, Sr(NO3)2, and Ca(NO3)2 |
[J] | The Journal of Chemical Physics, 1997, 106(5): 1653-1660. |
[254] | Levin Z. On the interactions of mineral dust, sea-salt particles, and clouds: A measurement and modeling study from the |
Mediterranean Israeli dust experiment campaign [J]. Journal of Geophysical Research, 2005, 110(D20): D20202. | |
[255] | Gibson E R, Gierlus K M, Hudson P K, et al. Generation of internally mixed insoluble and soluble aerosol particles to |
investigate the impact of atmospheric aging and heterogeneous processing on the CCN activity of mineral dust aerosol [J]. | |
Aerosol Science and Technology, 2007, 41(10): 914-924. | |
[256] | Feingold G, Cotton W R, Kreidenweis S M, et al. The impact of giant cloud condensation Nuclei on drizzle formation in |
stratocumulus: Implications for cloud radiative properties [J]. Journal of the Atmospheric Sciences, 1999, 56(24): 4100-4117. | |
[257] | Shi Z, Zhang D, Hayashi M, et al. Influences of sulfate and nitrate on the hygroscopic behaviour of coarse dust particles [J]. |
Atmospheric Environment, 2008, 42(4): 822-827. |
[1] | 韦娜娜 胡长进 周闪闪 马乔 盖艳波 林晓晓 顾学军 唐小锋 方波 赵卫雄 张为俊 吴代赦. 大气碘化学与含碘气溶胶形成机制的研究进展[J]. 大气与环境光学学报, 2018, 13(1): 1-19. |
[2] | 冯倩 邹斌 赵崴. 可见光波段非球形沙尘气溶胶散射和辐射特性的理论模拟[J]. 大气与环境光学学报, 2015, 10(1): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||