大气与环境光学学报 ›› 2023, Vol. 18 ›› Issue (3): 227-234.

• 环境光学监测技术 • 上一篇    下一篇

基于贝叶斯的大数据模型在大气污染成因分析中的应用

王莉君 *, 周玉 , 万丽娟 , 程亮亮   

  1. 合肥师范学院电子信息与电气工程学院
  • 收稿日期:2022-02-08 修回日期:2022-04-17 出版日期:2023-05-28 发布日期:2023-05-28
  • 通讯作者: E-mail: lijwang@qq.com E-mail:120639919@qq.com
  • 作者简介:王莉君 (1976– ), 女, 安徽亳州人, 硕士, 讲师, 主要从事信息处理、传感技术、大数据技术研究与应用。E-mail: lijwang@qq.com
  • 基金资助:
    安徽省教育厅省级教学示范课程建设项目 (2020SJJXSFK1991), 安徽省质量工程项目 (2020xsxxkc380), 电子信息仿真设计安徽省重点 实验室项目 (2020ZDSYSYB05)

Application of the Bayesian-based big data model in the analysis of the source of air pollution

WANG Lijun *, ZHOU Yu , WAN Lijuan , CHENG Liangliang   

  1. School of Electronic Information and Electrical Engineering, Hefei Normal University
  • Received:2022-02-08 Revised:2022-04-17 Published:2023-05-28 Online:2023-05-28

摘要: 提出了一种基于多维高斯贝叶斯分类算法的复杂系统影响因素的分析方法, 并利用大数据方法建立了不同 PM2.5范围的分类模型, 结合马氏距离开展了影响因素的关键性分析。以合肥市2013―2018 年间的天气与空气质量数 据为基础, 筛选了PM10、SO2、NO2、CO、O3等8 个大气污染的关键影响因素, 采用散点矩阵对PM2.5与这些影响因素的相 关性进行了分析。利用高斯贝叶斯分类器建立了基于8 个主要参量的PM2.5大气污染分析模型, 研究发现, PM2.5与CO 浓度具有较强的正相关性, 对NO2具有选择性, 与O3具有负相关性, 而CO与SO2对PM2.5的产生存在某种竞争机制。

关键词: 大数据技术, 高斯贝叶斯模型, 影响因素, PM2.5, 相关分析

Abstract: A method for analyzing influencing factors of complex systems based on multi-dimensional Gaussian Bayesian classification algorithm is proposed, classification models for diverse range of PM2.5 are established, and then the analysis of the key influencing factors on complex systems is carried out in combination with Mahalanobis distance. Based on the weather and air quality data of Hefei City from 2013 to 2018, 8 main influencing factors for PM2.5, such as PM10, SO2, NO2, CO, O3 and so on, are screened out, and then the correlation between PM2.5 and the influencing factors is analyzed using scatter matrix. The PM2.5 analysis model based on Gaussian Bayesian classifier is established with these data. It is found that PM2.5 has a strong positive correlation with CO concentration, is selective to NO2, and has a negative correlation with O3. As for CO and SO2, a certain competitive mechanism between the two factors in the production of PM2.5 is observed.

Key words: big data technology, Gaussian Bayesian model, influencing factors, PM2.5, correlation analysis

中图分类号: