[1] |
Special Expert Group for Control of the Epidemic of Novel Coronavirus Pneumonia of the Chinese Preventive Medicine
|
|
Association. An update on the epidemiological characteristics of novel coronavirus pneumonia (COVID-19) [J]. Chinese
|
|
Journal of Viral Diseases, 2020, 10(2): 86-92.
|
|
中华预防医学会新型冠状病毒肺炎防控专家组. 新型冠状病毒肺炎流行病学特征的最新认识 [J]. 中国病毒病杂志,
|
20 |
20, 10(2): 86-92.
|
[2] |
Yue X, Lei Y D, Zhou H, et al. Changes of anthropogenic carbon emissions and air pollutants during the COVID-19 epidemic
|
|
in China [J]. Transactions of Atmospheric Sciences, 2020, 43(2): 265-274.
|
|
乐 旭, 雷亚栋, 周 浩, 等. 新冠肺炎疫情期间中国人为碳排放和大气污染物的变化 [J]. 大气科学学报, 2020, 43(2):
|
26 |
5-274.
|
[3] |
Ai W Y, Wu Y J. Analysis of air pollution and social activity change in Jinan during the COVID-19 epidemic [J]. Changjiang
|
|
Information &Communications, 2021, 34(4): 29-34.
|
|
艾文育, 吴燕杰. COVID-19疫情期间济南大气污染及社会活跃度时空变化分析 [J]. 长江信息通信, 2021, 34(4): 29-34.
|
[4] |
Venter Z S, Aunan K, Chowdhury S, et al. COVID-19 lockdowns cause global air pollution declines [J]. Proceedings of the
|
|
National Academy of Sciences of the United States of America, 2020, 117(32): 18984-18990.
|
[5] |
Collivignarelli M C, Abbà A, Bertanza G, et al. Lockdown for COVID-2019 in Milan: What are the effects on air quality? [J].
|
|
The Science of the Total Environment, 2020, 732: 139280.
|
[6] |
Zhang R X, Zhang Y Z, Lin H P, et al. NOx emission reduction and recovery during COVID-19 in east China [J]. Atmosphere,
|
20 |
20, 11(4): 433.
|
[7] |
Chen Z F, Hao X Y, Zhang X Y, et al. Have traffic restrictions improved air quality? A shock from COVID-19 [J]. Journal of
|
|
cleaner production, 2021, 279: 123622.
|
[8] |
Nie D Y, Shen F Z, Wang J F, et al. Changes of air quality and its associated health and economic burden in 31 provincial
|
|
capital cities in China during COVID-19 pandemic [J]. Atmospheric Research, 2021, 249: 105328.
|
[9] |
Zhao X, Shen N C, Li L J, et al. Analysis of changes and factors influencing air pollutants in the Beijing-Tianjin-Hebei region
|
|
during the COVID-19 pandemic [J]. Environmental Science, 2021, 42(3): 1205-1214.
|
|
赵 雪, 沈楠驰, 李令军, 等. COVID-19 疫情期间京津冀大气污染物变化及影响因素分析 [J]. 环境科学, 2021, 42(3): 1205-
|
|
1214.
|
[10] |
Zhao Y B, Zhang K, Xu X T, et al. Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts
|
|
during the COVID-19 outbreak in mainland China [J]. Environmental Science & Technology Letters, 2020, 7(6): 402-408.
|
[11] |
Feng H Y. Impact of epidemic prevention and control measures on atmospheric paticulate concentration and distribution in
|
|
Urumqi [J]. Environmental Pollution and Control, 2021, 43(5): 606-610.
|
|
冯海英. 疫情防控措施对乌鲁木齐市大气颗粒物浓度及分布影响分析 [J]. 环境污染与防治, 2021, 43(5): 606-610.
|
[12] |
Yuan B B, Ma Y H, Zhang L, et al. Analysis of the impact of traffic flow on air quality during the epidemic in Urumqi [J].
|
|
Energy Conservation & Environmental Protection in Transportation, 2021, 17(2): 16-20.
|
|
袁波波, 马艳华, 张 蕾, 等. 乌鲁木齐市疫情期间交通流量对空气质量影响的分析 [J]. 交通节能与环保, 2021, 17(2):
|
16 |
-20.
|
[13] |
Wang O, He B Y. Influence of 5 air quality parameters on PM2.5 and temporal and spatial variation characteristics of PM2.5
|
|
concentration in Urumqi [J]. Environmental Protection of Xinjiang, 2018, 40(1): 6-11.
|
|
王 鸥, 何秉宇. 乌鲁木齐市空气质量5 参数对PM2.5的影响及PM2.5浓度时空变化特征分析 [J]. 新疆环境保护, 2018, 40
|
(1) |
: 6-11.
|
[14] |
Xie L, Di G Z. An analysis of the influencing factors for PM2.5 in cities based on R language [J]. Software Engineer, 2019, 22
|
(5) |
: 15-17.
|
|
解 蕾, 狄光智. 基于R语言的城市PM2.5影响因素分析 [J]. 软件工程, 2019, 22(5): 15-17.
|
[15] |
Zhou M D, Kuang Y Q, Yun G L. Analysis of driving factors of atmospheric PM2.5 concentration in Guangzhou city based on
|
|
geo-detector [J]. Research of Environmental Sciences, 2020, 33(2): 271-279.
|
|
周敏丹, 匡耀求, 云国梁. 基于地理探测器的广州市大气PM2.5浓度驱动因素分析 [J]. 环境科学研究, 2020, 33(2): 271-279.
|
[16] |
Jing Y, Sun Y L, Gao S, et al. Spatiotemporal variations of AOD and geographical detection of its influence factors in Beijing-
|
|
Tianjin-Hebei region [J]. Arid Land Geography, 2020, 43(1): 87-98.
|
|
景 悦, 孙艳玲, 高 爽, 等. 京津冀地区AOD时空变化及影响因子的地理探测 [J]. 干旱区地理, 2020, 43(1): 87-98.
|
[17] |
Cao T, Bai Y P. Air quality analysis and prediction before and after the prevention and control of COVID-19 in Taiyuan [J].
|
|
Hebei Journal of Industrial Science & Technology, 2021, 38(2): 156-162.
|
|
曹 通, 白艳萍. 太原市COVID-19防控前后空气质量分析及预测 [J]. 河北工业科技, 2021, 38(2): 156-162.
|
[18] |
Zha S P, Wang W J, Song Y Q, et al. Study on the ambient air quality of Wuhu City affected by the new type coronavirus
|
|
pneumonia epidemic [J]. Environmental Chemistry, 2020, 39(11): 3094-3100.
|
|
查书平, 王文婧, 宋艳卿, 等. 受新型冠状病毒肺炎疫情影响下的芜湖市环境空气质量 [J]. 环境化学, 2020, 39(11): 3094-
|
|
3100.
|
[19] |
Zhu J, Yuan X J, Ma J Y, et al. Research on factors of industrial waste gas emissions in Urumqi based on LMDI methods [J].
|
|
Environmental Conformity Assessment, 2015, 7(5): 77-82.
|
|
祝 婕, 袁新杰, 马俊英, 等. 基于LMDI模型的乌鲁木齐工业废气排放影响因素研究 [J]. 中国环境管理, 2015, 7(5): 77-82.
|
[20] |
Zou Z Y, Zheng X C, Xu C M, et al. Fujian Province highway motor vehicle pollutant emission inventory under the
|
|
background of the CO VID-19 [J]. Acta Scientiae Circumstantiae, 2022, 42(5): 119-128.
|
|
邹泽耀, 郑鑫程, 徐崇敏, 等. 疫情背景下的福建省高速公路机动车污染物排放清单 [J]. 环境科学学报, 2022, 42(5):
|
11 |
9-128.
|
[21] |
Meng L Y. Catalytic method in air pollution prevention and control technology [J]. Low Carbon World, 2017, (21): 4-5.
|
|
蒙李燕. 大气污染防治技术中的催化方法 [J]. 低碳世界, 2017, (21): 4-5.
|
[22] |
Jia L L. Study on Pollution Characteristics and Source Apportionment of Atmospheric Particulate Matter in Northern Cold
|
|
Areas [D]. Harbin: Harbin Institute of Technology, 2014.
|
|
贾琳琳. 北方寒冷地区大气颗粒物污染特征及源解析研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
|
[23] |
Shi L Z. Source Apportionment and Concentration Prediction of Urban Atmospheric Particulate Matter (PM10) and the
|
|
Influence of Meteorological Factors [D]. Changsha: Central South University, 2011.
|
|
石灵芝. 城市大气颗粒物 (PM10) 源解析与浓度预测及气象因素影响研究 [D]. 长沙: 中南大学, 2011.
|
[24] |
Hembeck L, He H, Vinciguerra T P. Measured and modelled ozone photochemical production in the Baltimore-Washington
|
|
airshed [J]. Atmospheric Environment: X, 2019, 2: 100017.
|
[25] |
Sicard P, De Marco A, Agathokleous E, et al. Amplified ozone pollution in cities during the COVID-19 lockdown [J]. The
|
|
Science of the Total Environment, 2020, 735: 139542.
|
[26] |
Shi Z B, Song C B, Liu B W, et al. Abrupt but smaller than expected changes in surface air quality attributable to COVID-19
|
|
lockdowns [J]. Science Advances, 2021, 7(3): 6696.
|
[27] |
Sbai S E, Mejjad N, Norelyaqine A, et al. Air quality change during the COVID-19 pandemic lockdown over the Auvergne-
|
|
Rhône-Alpes region, France [J]. Air Quality, Atmosphere & Health, 2021, 14(5): 617-628.
|
[28] |
Wang J F, Xu C D. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
|
|
王劲峰, 徐成东. 地理探测器: 原理与展望 [J]. 地理学报, 2017, 72(1): 116-134.
|
[29] |
Pariha Helili, Zan M, Alimjan Kasim. Remote sensing evaluation of ecological environment in Urumqi City and analysis of
|
|
driving factors [J]. Arid Zone Research, 2021, 38(5): 1484-1496.
|
|
排日海·合力力, 昝 梅, 阿里木江·卡斯木. 乌鲁木齐市生态环境遥感评价及驱动因子分析 [J]. 干旱区研究, 2021, 38
|
(5) |
: 1484-1496.
|