大气与环境光学学报 ›› 2025, Vol. 20 ›› Issue (5): 610-621.doi: 10.3969/j.issn.1673-6141.2025.05.005

• 光学遥感 • 上一篇    下一篇

近地面一次气态污染物遥感反演—以山西吕梁为例

刘旺 1, 秦凯 1*, 陆凌霄 1, 王璐瑶 2, 史来亮3   

  1. 1 中国矿业大学环境与测绘学院, 江苏 徐州 221000; 2 中国科学院地球环境研究所, 陕西 西安 710061; 3 山西省地球物理化学勘查院, 环境遥感应用山西省重点实验室, 山西 运城 044000
  • 收稿日期:2023-11-03 修回日期:2023-11-28 出版日期:2025-09-28 发布日期:2025-09-24
  • 通讯作者: E-mail: qinkai@cumt.edu.cn E-mail:qinkai@cumt.edu.cn
  • 作者简介:刘旺 (2000- ), 湖南衡阳人, 硕士研究生, 主要从事机器学习应用大气气体反演方面的研究。E-mail: TS22160040A31TM@cumt.edu.cn
  • 基金资助:
    国家自然科学基金 (42375125)

Remote sensing inversion of primary gaseous pollutants near surface—Taking Lüliang, Shanxi as an example

LIU Wang 1, QIN Kai 1*, LU Lingxiao 1, WANG Luyao 2, SHI Lailiang3   

  1. 1 College of Surveying and Mapping, China University of Mining and Technology, Xuzhou 221000, China; 2 Institute of Earth Environment, Chinese Academy of Sciences, Xi′an 710061, China; 3 Shanxi Key Laboratory of Environmental Remote Sensing Applications, Geophysical and Geochemical Exploration Institute of Shanxi Province, Yuncheng 044000, China
  • Received:2023-11-03 Revised:2023-11-28 Online:2025-09-28 Published:2025-09-24
  • Contact: Kai Qin E-mail:qinkai@cumt.edu.cn

摘要: 一氧化碳 (CO)、二氧化硫 (SO2)、氮氧化物 (NOx) 等一次气态排放物是空气污染源头控制的重要对象, 卫星遥 感可实现对其大范围的浓度监测, 是对地面站点监测的重要补充。本文基于山西省国控站点、吕梁市微型监测站点、 Sentinel-5P/Tropomi 卫星和MODIS的相关观测数据、气溶胶光学厚度、气象及其他辅助数据, 开展了吕梁市地区0.01° 空间分辨率的一次气态排放物浓度估算与制图研究。首先使用DINEOF方法进行卫星遥感缺失数据重构, 然后采用 极端梯度提升 (XGBoost) 方法进行浓度估算。研究结果表明, 相关一次气态排放物的估算浓度与站点观测值具有良 好的一致性, 反演结果能更准确地反映城市不同区域的一次气态排放物浓度分布差异性, 弥补了因国控站点分布稀 疏带来的缺陷, 为城市空气质量精准管控提供了更好的服务。

关键词: 一次气态污染物, 机器学习, 卫星遥感, 浓度反演

Abstract: Primary gaseous pollutants such as carbon monoxide (CO), sulfur dioxide (SO2) and nitrogen oxides (NOx) are important targets for controlling sources of air pollution. Satellite remote sensing can achieve large-scale concentration monitoring of these pollutants, which serves as a significant supplement to ground-based station monitoring. Based on the observation data including primary gaseous pollutants, aerosol optical depth, meteorological and other auxiliary data from Shanxi Province's national control stations, Lüliang City's micro monitoring stations, Sentinel-5P/Tropomi satellite and MODIS, this work conducts a study on the estimation and mapping of the concentrations of these primary gaseous pollutants (CO, NO2, SO2) with a spatial resolution of 0.01° in Lüliang City, China. Firstly, the DINEOF method is employed to reconstruct the missing data of satellite remote sensing, and then the eXtreme Gradient Boosting (XGBoost) method is utilized for concentration estimation. The finding reveals a strong correlation between the estimated concentrations and the station observation data of primary gaseous emissions, and the inversion results effectively illustrate the variations in the distribution of primary gaseous emissions across different regions within the city. It is indicated tht this approach compensates for the limitations posed by the sparse distribution of national control stations and enhances the precision of urban air quality control.

Key words: primary pollutant emission, machine learning, satellite remote sensing, concentration inversion

中图分类号: