[1]Liu Y X, Guo K, He X F, et al. Airborne laser bathymetry technology and its research progress [J]. Geomatics and Information Science of Wuhan University, 2017, 42(9): 1185-1194. 刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展 [J]. 武汉大学学报(信息科学版), 2017, 42(9): 1185-1194. [2]Qin H M, Wang C, Xi X H, et al. Airborne laser bathymetry technology and its research progress [J]. Remote Sensing Technology and Application, 2016, 31(4): 617-624. 秦海明, 王成, 习晓环, 等. 机载激光雷达测深技术与应用研究进展 [J]. 遥感技术与应用, 2016, 31(4): 617-624. [3]Steinbacher F, Pfennigbauer M, Aufleger M, et al. High resolution airborne shallow water mapping [J]. ISPRS - International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2012, XXXIX-B1(2): 55-60. [4]Chen J, Jin X L. Progress and application of airborne laser bathymetry technology [J]. Marine Science Bulletin, 2002, 21(6): 75-82. 陈坚, 金翔龙. 机载激光测深技术进展及应用 [J]. 海洋通报, 2002, 21(6): 75-82. [5]He Y, Tao B Y, Yu J Y, et al. Airborne laser bathymetry technology and applications [J]. Chinese Journal of Lasers, 2024, 51(11): 276-306. 贺岩, 陶邦一, 俞家勇, 等. 机载激光测深技术及应用 [J]. 中国激光, 2024, 51(11): 276-306. [6]Guenther G C, Larocque P E, Lillycrop W J. Multiple surface channels in scanning hydrographic operational airborne lidar survey (SHOALS) airborne lidar [C]//Ocean Optics XII International Society for Optics and Photonics, 1994, 2258: 422-430. [7]Cox C, Munk W H. Measurement of the roughness of the sea surface from photographs of the sun's glitter [J]. Journal of the Optical Society of America, 1954, 44(11): 838-850. [8]Guenther G C, Thomas R W, Larocque P E. Design considerations for achieving high accuracy with the SHOALS bathymetric lidar system [C]//CIS Selected Papers: Laser Remote Sensing of Natural Waters: From Theory to Practice, Russian Federation, SPIE, 1996, 2964: 54-71. [9]Guenther G C. Wind and nadir angle effects on airborne lidar water "surface" returns [C]//Ocean Optics VIII International Society for Optics and Photonics, Orlando, SPIE, 1986, 0637: 277-286. [10]Mandlburger G, Pfennigbauer M, Pfeifer N. Analyzing near water surface penetration in laser bathymetry – A case study at the River Pielach [J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, II-5/W2(4): 175-180. [11]Pan Z, Glennie C, Hartzell P, et al. Performance assessment of high resolution airborne full waveform lidar for shallow river bathymetry [J]. Remote Sensing, 2015, 7(5): 5133-5159. [12]Schwarz R, Pfeifer N, Pfennigbauer M, et al. Exponential decomposition with implicit deconvolution of lidar backscatter from the water column [J]. Journal of Photogrammetry Remote Sensing & Geoinformation Science, 2017, 85(3): 159-167. [13]Schwarz R, Mandlburger G, Pfennigbauer M, et al. Design and evaluation of a full-wave surface and bottom-detection algorithm for lidar bathymetry of very shallow waters [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(10): 1-10. [14]Tao B Y, Li J Z, Guo W, et al. Precise detection of water surface through the analysis of a single green waveform from bathymetry LiDAR [J]. Optics express, 2022, 30(22): 40820-40841. [15]He Y, Hu S J, Chen W B, et al. Research progress of domestic airborne dual-frequency lidar detection technology [J]. Laser and Optoelectronics Progress, 2018, 55(8): 7-17. 贺岩, 胡善江, 陈卫标, 等. 国产机载双频激光雷达探测技术研究进展 [J]. 激光与光电子学进展, 2018, 55(8): 7-17. [16]Tuell G, Barbor K, Wozencraft J. Overview of the coastal zone mapping and imaging lidar (CZMIL): a new multi sensor airborne mapping system for the U.S. Army Corps of Engineers [C]//Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVI, 2010, 7695: 76950R. [17]Wang C S, Liu Y X, Wu G F, et al. A comparison of waveform processing algorithms for single-wavelength lidar bathymetry [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101(3): 22-35. [18]Wong H, Antoniou A. One-dimensional signal processing techniques for airborne laser bathymetry [J]. IEEE Transactions on Geoscience & Remote Sensing, 1994, 34(1): 57-66. [19]Ramnath V, Feygels V, Kalluri H, et al. CZMIL (Coastal Zone Mapping and Imaging Lidar) bathymetric performance in diverse littoral zones [C]//OCEANS 2015 - MTS/IEEE Washington, Washington, SPIE, 2015, 1-10. [20]Biswas S R, Xiang J, Li H. Disturbance effects on spatial autocorrelation in biodiversity: an overview and a call for study [J]. Diversity, 2021, 13(4): 167-185.
|