[1] Noll R J. Zernike polynomials and atmospheric turbulence [J]. J. Opt. Soc. Am, 1976, 66: 207-211.
[2] Roddier N. Atmospheric wave-front simulation using Zernike polynomial [J]. Opt. Eng, 1990, 29(10): 1174-1180.
[3] Hua Zhili, Li Hongping. Algorithm for Phase Errors Compensation in Airborne Synthetic Aperture Ladar Data Processing [J]. Acta Optica Sinica(accepted), (in Chinese).
华志励, 李洪平. 一种机载合成孔径激光雷达相位误差补偿方法 [J]. 光学学报.
[4] McGlamery B L. Restoration of turbulence-degraded images [J]. J. Opt. Soc. Am, 1996, 57(3): 293-297.
[5] Mei Haiping, Wu Xiaoqing, Rao Ruizhong. Measurement and analysis of temperature power spectrum scaling exponent in non-Kolmogorov turbulent atmosphere [J]. High Power Laser and Particle Beams, 2006, 18(9): 1423-1426.
梅海平, 吴晓庆, 饶瑞中. 非Kolmogorov大气湍流温度谱标度指数的测量与分析 [J]. 强激光与粒子束, 2006,18(9): 1423-1426.
[6] Stribling B E. Laser beam propagation in non-kolmogorov atmospheric turbulence [D]. Ohio: Master Thesis of Air Force Institute of Technology, Wright-Patterson Air Force Base, 1994.
[7] Pérez D G, Zunino L. Generalized wavefront phase for non-Kolmogorov turbulence [J]. Optics Letters, 2008, 33(6): 572-574.
[8] Wang D S, Cao L. Chaos, Fractal and the Applications [M]. Hefei: USTC Press, 1995: 245-260.
[9] Schwartz C, Baum G, Ribak E N. Turbulence-degraded wave fronts as fractal surfaces [J]. J.Opt.Soc.Am.A, 1994, 11(1): 444-451.
[10] McGaughey D R, Aithen G J M. Statistical analysis of successive random additions for generating fractional Brownian motion [J]. Physica A, 2000, 277(1): 25-34.
[11] Hua Z L, Li H P, Gu Y J. Atmosphere turbulence phase compensation in synthetic aperture ladar data processing [C]. Proc. SPIE, 6787(24): 1-7.
[12] Lane R, Glindemann A, Dainty J. Simulation of a Kolmogorov phase screen [J].Waves in Random Media, 1992, 2(3): 209-224. |