1] Wang B, Nakajima T, Shi G Y. Cloud and water vapor feedbacks in a vertical energy-balance model with maximum entropy production [J]. J. Climate, 2008, 21(24): 6689-6697.
[2] Murayama T, Sugimoto N, Uno I, et al. Ground-based network observation of Asian dust events of April 1998 in east Asia: Quantifying the radiative impacts of mineral dust (DUST) [J]. J.Geophys. Res., 2001, 106(D16): 18345-18359.
[3] Mattis I, Ansmann A, Müller D, et al. Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET [J]. J. Geophys. Res., 2004, 109(D13): D13203.1- D13203.15.
[4] Schmid B, Ferrare R, Flynn C, et al. How well do state-of-the-art techniques measuring the vertical profile of tropospheric aerosol extinction compare? [J]. J. Geophys. Res., 2006, 111(D5): D05S07.
[5] Weitkamp C. LIDAR: Range-Resolved Optical Remote Sensing of the Atmosphere [M]. Springer Science+Business Media Inc., 2005: 443.
[6] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response [J]. J. Geophys. Res., 1997, 102(D6): 6831-6864.
[7] Berger A, Tricot C. The greenhouse effect [J]. Surv. Geophys., 1992, 13: 523-549.
[8] Nakazawa T, Miyashita K, Aoki S, et al. Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide [J]. Tellus Ser. B-Chem. Phys. Meteorol., 1991, 43: 106-117.
[9] Stephens B B, Gurney K R, Tans P P, et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2 [J]. Sci., 2007, 316(5832): 1732-1735.
[10] Forster P M, Ramaswamy V, Artaxo P, et al. Changes in Atmospheric Constituents and in Radiative Forcing [R]. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Solomon S, et al, eds., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[11] Lacis A A, Wuebbles D J, Logan J A. Radiative forcing of climate by changes in the vertical distribution of ozone [J]. J. Geophys. Res., 1990, 95(7): 9971-9981.
[12] Forster P M D, Shine K P. Radiative forcing and temperature trends from stratospheric ozone changes [J]. J. Geophys. Res., 1997, 102(D9): 10841-10855.
[13] Meehl G A, Stocker T F, Collins W D, et al. Global Climate Projections [R]. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Solomon S, et al, eds., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[14] Austin J, Tourpali K, Rozanov E, et al. Coupled chemistry climate model simulations of the solar cycle in ozone and temperature [J]. J. Geophys. Res., 2008, 113: D11306.
[15] Fioletov V E. Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone [J]. J. Geophys. Res., 2009, 114(D2): D02302.1- D02302.15.
[16] Waugh D W, Oman L, Kawa S R, et al. Impacts of climate change on stratospheric ozone recovery [J]. Geophys. Res. Lett., 2009, 36(3): L03805.1-L03805.6.
[17] Eyring V, Cionni I, Lamarque J F, et al. Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios [J]. Geophys. Res. Lett., 2010, 37(16): L16807.
[18] Chylek P, Wong J. Effect of absorbing aerosols on global radiation budget [J]. Geophys.Res. Lett., 1995, 22(8): 929-931.
[19] Haywood J M, Shine K P. Multi-spectral calculations of the direct radiative forcing of tropospheric sulphate and soot aerosols using a column model [J]. Q. J. R. Meteorol. Soc., 1997, 123(543): 1907-1930.
[20] Hsu N C, Herman J R, Tsay S C. Radiative impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia [J]. Geophys. Res. Lett., 2003, 30(5): 1224.
[21] Haywood J, Boucher O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review [J]. Rev. Geophys., 2000, 38(4): 513-543.
[22] Meloni D, Di Sarra A, Di Iorio T, et al. Influence of the vertical profile of Saharan dust on the visible direct radiative forcing [J]. J. Quant. Spectrosc. & Radiat. Transfer, 2005, 93(4): 397-413.
[23] Hsu N C, Herman J R, Weaver C. Determination of radiative forcing of Saharan dust using combined TOMS and ERBE data [J]. J. Geophys. Res., 2000, 105(D16): 20649-20661.
[24] Haywood J, Francis P, Osborne S, et al. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum [J]. J. Geophys. Res., 2003, 108(D18): 8577.
[25] Haywood J M, Allan R P, Culverwell I, et al. Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? [J]. J. Geophy. Res., 2005, 110(D5): D05105.1- D05105.14.
[26] Yu H, Kaufman Y J, Chin M, et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing [J]. Atmos. Chem. Phys., 2006, 6(3): 613-666.
[27] Rotstayn L D. Indirect forcing by anthropogenic aerosols: a global climate model calculation of the effective-radius and cloud-lifetime effects [J]. J. Geophys. Res., 1999, 104(D8): 9369-9380.
[28] Phillips V T J, Choularton T W, Blyth A M, et al. The influence of aerosol concentrations on the glaciation and precipitation of a cumulus cloud [J]. Q. J. R. Meteorol. Soc., 2002, 128(581): 951-971.
[29] Chen Li, Yin Yan, Yang Jun, et al. Effects of sand dust particles on cloud and precipitation: a numerical study [J]. Journal of Nanjing Institute of Meteorology, 2007, 30(5): 590-600(in Chinese).
陈丽,银燕,杨军,等. 沙尘气溶胶对云和降水影响的模拟研究 [J]. 南京气象学院学报, 2007, 30(5): 590-600.
[30] Ackerman A S, Toon O B, Stevens D E, et al. Reduction of tropical cloudiness by soot [J]. Sci., 2000, 288(5468): 1042-1047.
[31] Yin Y, Chen L. The effects of heating by transported dust layers on cloud and precipitation: a numerical study [J]. Atmos. Chem. Phys., 2007, 7: 3497-3505.
[32] Penner J E, Zhang S Y, Chuang C C. Soot and smoke aerosol may not warm climate [J]. J. Geophys. Res., 2003, 108(D21): 4657.
[33] Joshi M, Shine K, Ponater M, et al. A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change [J]. Clim. Dyn., 2003, 20(7-8): 843-854.
[34] Hansen J, Sato M, Ruedy R, et al. Efficacy of climate forcings [J]. J. Geophys. Res., 2005, 110(D18): D18104.1- D18104.45.
[35] Stuber N, Ponater M, Sausen R. Why radiative forcing might fail as a predictor of climate change [J]. Clim. Dyn., 2005, 24(5): 497-510.
[36] Sokolov A P. Does model sensitivity to changes in CO2 provide a measure of sensitivity to other forcings? [J]. J. Climate, 2006, 19(13): 3294-3306.
[37] NRC. Understanding Climate Change Feedbacks [M]. Washington D C: The National Academies Press, 2003.
[38] Kiehl J T, Trenberth K E. Earth's annual global mean energy budget [J]. Bull. Am. Meteorol. Soc., 1997, 78(2): 197-208.
[39] Held I M, Soden B J. Water vapor feedback and global warming [J]. Ann. Rev. Energy Env., 2000, 25: 441-475.
[40] Lindzen R S. Some coolness concerning global warming [J]. Bull. Am. Meteorol. Soc., 1990, 71: 288-299.
[41] Randel W J, Wu F. Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data [J]. J. Climate, 2006, 19(10): 2094-2104.
[42] Trenberth K E, Jones P D, Ambenje P, et al. Observations: Surface and Atmospheric Climate Change [R]. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Solomon S, et al, eds., Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[43] Paltridge G, Arking A, Pook M. Trends in middle- and upper-level tropospheric humidity from NCEP reanalysis data [J]. Theor. Appl. Clim., 2009, 98(3-4): 351-159.
[44] Dessler A E, Sherwood S C. Atmospheric science: a matter of humidity [J]. Sci., 2009, 323(5917): 1020-1021.
[45] Dessler A E, Davis S M. Trends in tropospheric humidity from reanalysis systems [J]. J. Geophys. Res., 2010, 115: D19127.
[46] Solomon S, Rosenlof K H, Portmann R W, et al. Contributions of stratospheric water vapor to decadal changes in the rate of global warming [J]. Sci., 2010, 327(5970): 1219-1223.
[47] Bony S, Duvel J P. Influence of the vertical structure of the atmosphere on the seasonal-variation of precipitable water and greenhouse-effect [J]. J Geophys. Res., 1994, 99(D6): 12963-12980.
[48] Zhang M H, Hack J J, Kiehl J T, et al., Diagnostic study of climate feedback processes in atmospheric general circulation models [J]. J. Geophys. Res., 1994, 99(D3): 5525-5537.
[49] Randall D A, Wood R A, Bony S, et al. Cilmate Models and Their Evaluation [R]. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Solomon S, et al, eds, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[50] Stephens G L. Cloud feedbacks in the climate system: a critical review [J]. J. Climate, 2005, 18(2): 237-273.
[51] Lindzen R S, Chou M D, Hou A Y. Does the earth have an adaptive infrared iris? [J]. Bull. Am. Meteorol. Soc., 2001, 82(3): 417-432.
[52] Rondanelli R, Lindzen R S. Comment on "Variations of tropical upper tropospheric clouds with sea surface temperature and implications for radiative effects" by H. Su et al [J]. J. Geophys. Res., 2010, 115: D06202.
[53] Su H, Jiang J H, Neelin J D, et al. Reply to comment by Roberto Rondanelli and Richard S. Lindzen on "Variations in convective precipitation fraction and stratiform area with sea surface temperature" [J]. J. Geophys. Res., 2010, 115: D06203.
[54] Hartmann D L, Larson K. An important constraint on tropical cloud - climate feedback [J]. Geophys. Res. Lett., 2002, 29(20): 12.1-12.4.
[55] Chae J H, Sherwood S C. Insights into cloud-top height and dynamics from the seasonal cycle of cloud-top heights observed by MISR in the West Pacific region [J]. J. Atmos. Sci., 2010, 67(1): 248-261.
[56] Bony S, Colman R, Kattsov V M, et al. How well do we understand and evaluate climate change feedback processes? [J]. J. Climate, 2006, 19(15): 3445-3482.
[57] Inoue T, Kamahori H. Statistical relationship between ISCCP cloud type and vertical relative humidity profile [J]. J. Meteorol. Soc. Japan, 2001, 79(6): 1243-1256.
[58] Schneider S H. Detecting climatic-change signals - are there any fingerprints [J]. Sci., 1994, 263(5145): 341-347.
[59] Tett S F B, Mitchell J F B, Parker D E, et al. Human influence on the atmospheric vertical temperature structure: detection and observations [J]. Sci., 1996, 274(5290:) 1170-1173.
[60] Santer B D, Wehner M F, Wigley T M L, et al. Contributions of anthropogenic and natural forcing to recent tropopause height changes [J]. Sci., 2003, 301(5632): 479-483.
[61] Shindell D, Rind D, Balachandran N, et al. Solar cycle variability, ozone, and climate [J]. Sci., 1999, 284(5412): 305-308.
[62] Kishcha P, Barnaba F, Gobbi G P, et al. Vertical distribution of Saharan dust over Rome (Italy): comparison between 3-year model predictions and lidar soundings [J]. J. Geophys. Res., 2005, 110(D6): D06208.1- D06208.16.
[63] Textor C, Schulz M, Guibert S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom [J]. Atmos. Chem. Phys., 2006, 6(7): 1777-1813.
[64] Turner D D, Tobin D C, Clough S A, et al. The QME AERI LBLRTM: a closure experiment for downwelling high spectral resolution infrared radiance [J]. J. Atmos. Sci., 2004, 61(22): 2657-2675.
[65] Raisanen P. Effect of vertical resolution on cloudy-sky radiation calculations: tests with two schemes [J]. J. Geophys. Res., 1999, 104(D22): 27407-27419.
[66] Stephens G L, Wood N B, Gabriel P M. An assessment of the parameterization of subgrid-scale cloud effects on radiative transfer. Part I: vertical overlap [J]. J. Atmos. Sci., 2004, 61(6): 715-732.
[67] Willen U, Crewell S, Baltink H K, et al. Assessing model predicted vertical cloud structure and cloud overlap with radar and lidar ceilometer observations for the baltex bridge campaign of CLIWA-NET [J]. Atmos. Res., 2005, 75(3): 227-255.
[68] Naud C M, Del Genio A, Mace G G, et al. Impact of dynamics and atmospheric state on cloud vertical overlap [J]. J. Climate, 2008, 21: 1758-1770. [69] Roeckner E, Brokopf R, Esch M, et al. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model [J]. J. Climate, 2006, 19(16): 3771-3791.
[70] Austin J, Butchart N, Swinbank R. Sensitivity of ozone and temperature to vertical resolution in a GCM with coupled stratospheric chemistry [J]. Q. J. R. Meteorol. Soc., 1997, 123(541): 1405-1431.
[71] Lane D E, Somerville R C J, Iacobellis S F. Sensitivity of cloud and radiation parameterizations to changes in vertical resolution [J]. J. Climate, 2000, 13(5): 915-922.
[72] Pope V D, Pamment J A, Jackson D R, et al. The representation of water vapor and its dependence on vertical resolution in the Hadley Centre Climate Model [J]. J. Climate, 2001, 14(14): 3065-3085.
[73] Tompkins A M, Emanuel K A. The vertical resolution sensitivity of simulated equilibrium temperature and water-vapour profiles [J]. Q. J. R. Meteorol. Soc., 2000, 126(565): 1219-1238.
[74] Ingram W J. On the robustness of the water vapor feedback: GCM vertical resolution and formulation [J]. J. Climate, 2002, 15(9): 917-921.
[75] Hassler B, Bodeker G E, Dameris M. Technical note: a new global database of trace gases and aerosols from multiple sources of high vertical resolution measurements [J]. Atmos. Chem. Phys., 2008, 8(17): 5403-5421. |