[1]Owen D M, Amy G L, Chowdhury Z K. NOM characterization and treatability [J]. Journal of American Water Works Association, 1995, 87(1): 46-63.
[2]Leenheer J A, Croue J P. Characterizing aquatic dissolved organic matter [J]. Environmental Science & Technology, 2003, 37(1): 18-36.
[3]Swietlik J, Dsbrowska A, Raczyk-Stanislawiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone [J]. Water Research, 2004, 38(3): 547-558.
[4] Zhao Zhengye, Xiao Xianming, Li Li, et al. Effect on trihalomethane forming for different molecular weight dissolved organic matter in water resource [J]. Chinese Journal of Enviromental Science, 2002, 23(6): 140-144(in Chinese).
赵振业, 肖贤明, 李丽, 等. 水体中不同相对分子质量有机质对饮用水消毒的影响 [J]. 环境科学, 2002, 23(6): 140-144.
[5] Wu F C, Cai Y R, Evans D, et al. Complexation between Hg(II) and dissolved organic matter in stream waters: An application of fluorescence spectroscopy [J] . Biogeochemistry, 2004, 71(3): 339-351.
[6] Fu Pingqing, Liu Congqiang, Wu Fengchang. Three-dimensional excitation emission matrix fluorescence spectroscopic Characterization of the complexation between Mercury(Ⅱ) and dissolved organic matter [J]. Environmental Science, 2004, 25(6): 140-144(in Chinese).
傅平青, 刘丛强, 吴丰昌. 三维荧光光谱研究溶解有机质与汞的相互作用 [J]. 环境科学, 2004, 25(6): 140-144.
[7] Einsiedl F, Hertkorn N, Wolf M, et al. Rapid biotic molecular transformation of fulvic acids in a karst aquifer [J]. Geochimica et Cosmochimica Acta, 2007 ,71(22): 5474-5482.
[8]Opsahl S, Benner R. Photochemical reactivity of dissolved lignin in river and ocean waters [J]. Limnology Oceanography, 1998, 43(6): 1297-1303.
[9]Li Hongbin, Liu Wenqing, Wang Zhigang, et al. Concentration calibration of multi-component analysis based on three-dimensional fluorescence spectroscopy [J]. Chinese Journal of Quantum Electronics, 2007, 24(3): 306-310(in Chinese).
李宏斌, 刘文清, 王志刚, 等. 基于三维荧光光谱技术的多组分分析浓度校准方法研究 [J]. 量子电子学报, 2007, 24(3): 306-310.
[10]Baker A. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent [J]. Environmental Science & Technology, 2002, 36(7): 13-77.
[11]Wolfe M F, Olsen H E, Tjeerdema R S. Induction of stress proteins in Isochrysis galbana exposed to crude oil and chemically dispersed crude oil preparation [J]. Marine Environmental Research, 1996, 42(1-6): 405.
[12]Leenheer J A, Wershaw R L, Brown G K, Reddy M M. Characterization and diagenesis of strong-acid carboxyl groups in humic substances [J]. 2003, 18(3): 471-482.
[13]Zhong Runsheng, Zhang Xihui, Guan Yuntao, et al. Three-dimensional fluorescence fingerprint for source determination of dissolved organic matters in polluted river [J]. Spectroscopy and Spectral Analysis, 2008, 26(2): 13-18(in Chinese).
钟润生, 张锡辉, 管运涛, 等. 三维荧光指纹光谱用于污染河流溶解性有机物来源示踪 [J]. 光谱学与光谱分析, 2008, 26(2): 13-18.
[14]Yang Y, Zhang D. Concentration effect on the fluorescence spectra of humic substances [J]. Communications in Soil Science and Plant Analysis, 1995, 26(15-16): 2333-2349.
[15] Vodacek A, Philpot W D. Environmental effects on laser-induced fluorescence spectra of natural waters [J]. Remote Sensing of Environment, 1987, 21(1): 83-95.
[16]Lanne R W P M. Influence of PH on the fluorescence of dissolved organic matter [J]. Mar. Chem., 1982, 11(4): 359-401.
[17]Vodacek A, Philpot W D. Environmental effects on laser-induced fluorescence spectra of natural waters [J]. Remote Sensing of Environment, 1987, 21(1): 83-95. [18]Mobed J J, Hemmingsen S L, Autry J L, et al. Fluorescence characterization of IHSS humic substances: total luminescence spectra with absorbance correction [J]. Environmental Science & Technology, 1996, 30(10): 3061-3065.
[19]Henderson R K, Baker A, Murphy K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: a review [J]. Water Research, 2009, 49(3): 863-881.
[20]Senesi N. Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organnic chemicals: partⅡ [J]. The Fluorescence Spectroscopy Approach, 1990, 23(2): 77-106.
[21]Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346. [22]Senesi N, Miano T M, Provenzano M R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy [J]. Soil Science, 1991, 152(4): 259-271.
[23]Chen R F, Bada J L. The fluorescence of dissolved organic matter in seawater [J]. Marine Chemistry, 1992, 37(3-4): 191-221.
[24] De Souza Sierra M M, Donard O F X, Lamotte M, et al. Fluorescence spectroscopy of coastal and marine waters [J]. Marine Chemistry, 1994, 47(2): 127-144.
[25]Ghosh K, Schnizer M. Fluorescence excitation spectra of humic substances [J]. Canadian Journal Soil Science, 1980, 60(2): 373-379.
[26]Au K K, Penisson A C, Yang S, et al. Natural organic matter at oxide/water interfaces: complexation and conformation [J]. Geochimica et Cosmochimica Acta, 1999, 63(19-20): 2903-2917.
[27] Esteves da Silva J C G, Machado A A S C, Oliveira C J S, et al. Fluorescence quenching of anthropogenic fulvic acids by Cu(II),Fe(III) and UO22+ [J]. Talanta, 1998, 45(6): 1155-1165.
[28]Ahmad S R, Reynolds D M. Monitoring of water quality using fluorescence technique: prospect of on-line process control [J]. Water Research, 1999, 33(9): 2069-2074.
[29] Yang Ce, Zhong Ningning, Shi Yulei, et al. Three-dimensional excitation emission matrix fluorescence spectroscopic characterization of dissolved organic matter in water of coal-mining area [J]. Spectroscopy and Spectral Analysis, 2008(1): 174-177(in Chinese).
杨策, 钟宁宁, 师玉雷, 等. 煤矿区水体溶解有机质三维荧光光谱特征 [J]. 光谱学与光谱分析, 2008, 28(1): 174-177.
[30] Hao Ruixia, Cao Kexin, Deng Yiwen. Characterization of dissolved organic pollutants in wastewater by three-dimensional fluorescent spectroscopy [J]. Chinese Journal of Analysis Laboratory, 2007, 26(10): 41-45(in Chinese).
郝瑞霞, 曹可心, 邓亦文. 三维荧光光谱法表征污水中溶解性有机物 [J]. 分析试验室, 2007, 26(10): 41-45.
[31] Baker A, Inverarity R, Charlton M, et al. Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England [J]. Environmental Pollution, 2003, 124(1): 57-70.
[32]Baker A. Spectrophotometric discrimination of river dissolved organic matter [J]. Hydrological Processes, 2002, 16(16): 3203-3213.
[33] Hudson N, Baker A, Ward D, et al. Can fluorescence spectrometry be used as a surrogate for the biochemical oxygen demand (BOD) test in water quality assessment? an example from south west England [J]. Science of the Total Environment, 2008, 391(1): 149-158.
[34]Lee S, Ahn K H. Monitoring of COD as an organic indicator in waste water and treated effluent by fluorescence excitation–emission (FEEM) matrix characterization [J]. Water Science and Technology, 2004, 50(8): 57-63.
[35]Cumberland S A, Baker A. The freshwater dissolved organic matter fluorescence-total organic carbon relationship [J]. Hydrological Processes, 2007, 21(16): 2093-2099.
[36]Baker A. Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers [J]. Environmental Science and Technology, 2001, 35(5): 948-953.
[37]Hur J, Hwang S J, Shin J K. Using synchronous fluorescence technique as a water quality monitoring tool for an urban river [J]. Water, Air, and Soil Pollution, 2008, 191(1-4): 231-243.
[38]Reynolds D M, Ahmad S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique [J]. Water Research, 1997, 31(8): 2012-2018.
[39]Reynolds D M, Ahmad S R. Rapid and direct determination of wastewater BOD values using a fluorescence technique [J]. Water Research, 1997, 31(8): 2012-2018.
[40]Ahmad S R, Reynolds D M. Synchronous fluorescence spectroscopy of wastewater and some potential constituents [J]. Water Research, 1995, 29(6): 1599-1602. [41]Vasel J L, Praet E. On the use of fluorescence measurements to characterize wastewater [J]. Water Science and Technology, 2002, 45(4-5): 109-116.
[42]Wu J, Pons M N, Potier O. Wastewater fingerprinting by UV–visible and synchronous fluorescence spectroscopy [J]. Water Science and Technology, 2006, 53(4-5): 449-456.
[43]Baker A, Inverarity R, Charlton M, et al. Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England [J]. Environmental Pollution, 2003, 124(1): 57-70.
[44]Baker A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers [J]. Environmental Science & Technology, 2001, 35(5): 948-953.
[45]Stedmon C A. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy [J]. Marine Chemistry, 2003, 23(2): 239-254.
[46]Zhao Yunying, Ma Yongan. Recent progress and development in oil spills identification by fluorescence spectroscopy [J]. Marine Environmental Science, 1997, 16(2): 30-35(in Chinese).
赵云英, 马永安. 荧光光谱法鉴别海面溢油源的研究进展 [J]. 海洋环境科学, 1997, 16(2): 30-35.
[47]Zhao Nanjing, Liu Wenqing, Liu Jianguo, et al. Study on characteristics of fluorescence spectra of dissolved organic matter with different water quality [J]. Spectroscopy and Spectral Analysis, 2005, 25(7): 1077-1079(in Chinese).
赵南京, 刘文清, 刘建国, 等. 不同水体中溶解有机物的荧光光谱特性研究 [J].光谱学与光谱分析, 2005, 25(7): 1077-1079.
[48] Wang Zhigang, Liu Wenqing, Zhang Yujun, et al. Comparative research on determination of water integrated organic pollution index with three dimensional excitation-emission fluorescence spectroscopy and traditional wet chemical methods [J]. Spectroscopy and Spectral Analysis, 2007, 27(12): 2514-2516(in Chinese). 王志刚, 刘文清, 张玉钧, 等. 不同来源水体有机综合污染指标的三维荧光光谱法与传统方法测量的对比研究 [J]. 光谱学与光谱分析, 2007, 27(12): 2514-2516. |