[1] Sisler J F, Malm W C. The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United States [J]. Atmos. Environ., 1994, 28(5): 851-862.
[2] Charlson R J, Schwartz S E, Hales J M, et al. Climate forcing by anthropogenic aerosol [J]. Science, 1992, 255(5043): 423-430.
[3] Dusek U, Frank G P, Hildebrandt L. Size matters more than chemistry for cloud-nucleating ability of aerosol particles [J]. Science, 2006, 312(5778): 1375-1378.
[4] IPCC, 2007. Climate change 2007: the physical science basis [C]. In Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, United Kingdom and New York, NY, USA.
[5] Chan H K, Eberl S, Daviskas E, et al. Changes in lung deposition of aerosols due to hygroscopic growth: a fast SPECT study [J]. Journal of Aerosol Medicine, 2002, 15(3): 307-311.
[6] Tang I N. Water transformation and growth of aerosol particles composed of mixed salts [J]. J. Aerosol Sci., 1976, 7(5): 361-371.
[7] Tang I N, Munkelwitz H R. Water activities, densities, and refractive-indices of aqueous sulfates and sodium-nitrate droplets of atmospheric importance [J]. J. Geophys. Res.-Atmos., 1994, 99(D9): 18801-18808.
[8] Weis D D, Ewing G E. Water content and morphology of sodium chloride aerosol particles [J]. J. Geophys. Res. -Atmos., 1999, 104(D17): 21275-21285.
[9] Zhang Y, Seigneur C, Seinfeld J H, et al. A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes [J]. Atmospheric Environment, 2000, 34(1): 117-137.
[10] Topping D O, McFiggans G B, Coe H. A curved multi-component aerosol hygroscopicity model framework: part 1- inorganic compounds [J]. Atmos. Chem. Phys., 2005, 5(5): 1205-1222.
[11] Saxena P, Hildemann L M. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds [J]. J. Atmos. Chem., 1996, 24(1): 57-109.
[12] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol: current and emerging issuers [J]. Atmos. Chem. Phys., 2009, 9(14): 5155-5236.
[13] Li W J, Zhang D Z, Shao L Y, et al. Individual particle analysis of aerosols collected under haze and non-haze conditions at a high-elevation mountain site in the North China Plain, Atmos. Chem. Phys., 2011, 11(8): 11733-11744.
[14] David R, Cocker III, Brian T, et al. The effect of water on gas–particle partitioning of secondary organic aerosol: II. m-xylene and 1,3,5-trimethylbenzene photooxidation systems [J]. Atmos. Environ., 2001, 35(35): 6073-6085.
[15] Varutbangkul V, Brechtel F J, Bahreini R, et al. Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds [J]. Atmos. Chem. Phys., 2006, 6: 2367-2388.
[16] Agency for Toxic Substances and Disease Registry (ATSDR), Toxicological Profile for Styrene [R]. U. S. Public Health Service, U. S. Department of Health and Human Services, Atlanta, GA, 1992.
[17] Bufalini J J, Altshuller A P. Kinetics of vapor-phase hydrocarbon-ozone reactions [J]. Can. J. Chem., 1965, 43: 2243-2251.
[18] Tuazon E C, Arey J, Atkinson R, et al. Gas-phase reactions of 2-vinylpyridine and styrene with OH and NO3 radicals and O3 [J]. Environ. Sci. Technol., 1993, 27(9): 1832-1841.
[19] Carter W P L, Luo D, Malkina I L. Final Report to the Styrene Information and Research Center [R]. 1999.
[20] Jia Long, Xu Yongfu. Formation of secondary organic aerosol from the styrene-NOx irradiation [J]. Acta Chimica Sinica, 2010, 68(23): 2429-2435.
贾龙, 徐永福. 苯乙烯-NOx光照的二次有机气溶胶生成 [J]. 化学学报, 2010, 68(23): 2429-2435.
[21] McMurry P H, Stolzenburg M R. On the sensitivity of particle size to relative humidity for Los Angeles aerosols [J]. Atmos. Environ., 1989, 23(2):497-507.
[22] Liu P Y H, Pui D Y H, Whiby K T, et al. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols [J]. Atmos. Environ., 1978, 12(1-3): 99-104. [23] Pan G, Hu C J, Wang Z Y, et al. Direct detection of isoprene photooxidation products by using synchrotron radiation photoionization mass spectrometry [J]. Rapid Commun. Mass Spectrom., 2012, 26(2): 189-194.
[24] Liu X Y, Zhang W J, Huang M Q, et al. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of α-pinene [J]. J. Environ. Sci-China, 2009, 21(4): 447-451.
[25] Wang Xuan, Chen Jianhua, Chen Jianmin, et al. Characterization of hygroscopic properties of laboratory-generated nanometer aerosols [J]. Research of Environmental Sciences, 2011, 24(6): 621-631(in Chinese).
王轩, 陈建华, 陈建民, 等. 实验室发生纳米气溶胶吸湿性表征 [J]. 环境科学研究, 2011, 24(6): 621-631.
[26] Villani P, Picard D, Michaud V, et al. Design and validation of a volatility hygroscopic tandem differential mobility analyzer (VH-TDMA) to characterize the relationships between the thermal and hygroscopic properties of atmospheric aerosol particles [J]. Aerosol Science and Technology, 2008, 42(9): 729-741. |