[1] Müller G. A Contribution to the Implementation of the WMO Strategic Plan: 2008-2011 (WMO TD NO. 1384). GAW report, No. 172. World Meteorological Organization, Geneva, Switzerland, 2008.
[2] Rothman L S, Gordon I E., et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 2009, 110: 533.
[3] ZHANG Xiao-hui, CHEN Jin-hai, PENG Qi, et al. 激光频率调制线性分析。(张向辉,陈金海,彭其,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2001, 21(3) : 257.
[4] GU Hui-ming(谷怀民),Alan Zhang. 多光程吸收的频率调制光谱. Acta Photonica Sinca (光子学报), 2003, 32:1013.
[5] WU Sheng-hai, ZHUANG Hua, YANG Xiao-hua, et al (吴升海,庄华,杨晓华). 高分辨分子吸收光谱中的波长校准方法. Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2002, 22(4) : 569.
[6] Boras K, Deboer D, Lin Z, Reilly J P. The Stark effect in methane's 3v1 + v3 vibrational overtone band. J. Chem. Phys, 1993, 99: 1429.
[7] Campargue A, Chenevier M, Stoeckel F. Intracavity-laser-absorption spectroscopy of the visible overtone transition of methane in a supersonically cooled jet. Chem. Phys. Lett, 1991, 183: 153.
[8] Campargue A, Permogorov D, Jost R. Intracavity absorption spectroscopy of the third stretching overtone transition of jet cooled methane. J. Chem. Phys, 1995, 102: 5910. [9] Hippler M, Quack M. Cw-cavity ring-down infrared absorption spectroscopy in pulsed supersonic jets: Nitrous oxide and methane. Chem. Phys. Lett, 1999, 314: 273.
[10] Hippler M, Quack M. High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3 band of methane near 7510 cm−1 in slit jet expansions and at room temperature. J. Chem. Phys, 2002,116: 6045.
[11] Amrein A, Quack M, Schmitt U. High-resolution interferometric Fourier transform infrared absorption spectroscopy in supersonic free jet expansions: carbon monoxide, nitric oxide, methane, ethyne, propyne, and trifluoromethane. J. Phys. Chem. 1988, 92: 5455.
[12] Albert S, Bauerecker S, Boudon V, Brown L R, Champion J P, Loëte M, Nikitin A, Quack M, Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800 cm−1. Chemical Physics. 2009, 356: 131.
[13] Kluczynski P, Gustafsson J, et al. Wavelength modulation absorption spectrometry — an extensive scrutiny of the generation of signals. Spectrochimica Acta Part B, 2001,56: 1277.
[14] Rothman L S, Jacquemart D, et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer, 2005, 96: 139.
[15] Bragg S L, Kelley J D. Atmospheric water vapor absorption at 1.3 µm. Appl. Opt, 1987, 26: 506. |