[1] Styszko-Grochowiak K, Go?a? J, Jankowski H, et al. Characterization of the coal fly ash for the purpose of improvement of industrial on-line measurement of unburned carbon content [J]. Fuel, 2004, 83(13): 1847-1853.
[2] Toh Y, Oshima M, Koizumi M, et al. Analysis of cadmium in food by multiple prompt γ-ray spectroscopy [J]. Appl. Radiat. Isot., 2006, 64(7): 751-754.
[3] Liang Yunxian, Chen Xinglong, Wang Qi, et al. Quantitative analysis of Ca and Mg in slag with artificial neural networks [J]. Journal of Atmospheric and Environmental Optics, 2012, 7(2): 124-130(in Chinese).
梁云仙, 陈兴龙, 王琦, 等. 神经网络在测定炉渣中Ca和Mg含量的应用 [J]. 大气与环境光学学报, 2012, 7(2): 124-130.
[4] Whitehouse A I, Young J, Botheroyd I M, et al. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy [J]. Spectrochim. Acta Part B, 2001, 56(6): 821-830.
[5] Rai A K, Zhang H, Yueh F Y, et al. Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys [J]. Spectrochim. Acta Part B, 2001, 56(12): 2371-2383.
[6] Kumar A, Yueh F Y, Miller T, et al. Detection of trace elements in liquids by laser-induced breakdown spectroscopy with a meinhard nebulizer [J]. Appl. Opt., 2003, 42(30): 6040-6046.
[7] Yin W B, Zhang L, Dong L, et al. Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants [J]. Appl. Spectrosc., 2009, 63(8): 865-872.
[8] Zhang L, Ma W G, Dong L, et al. Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS) [J]. Appl. Spectrosc., 2011, 65(7): 790-796.
[9] Hu Zhiyu, Zhang Lei, Ma Weiguang, et al. Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW [J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 602-605(in Chinese).
胡志裕, 张雷, 马维光, 等. 基于LabVIEW的激光诱导击穿光谱谱线识别软件研究 [J]. 光谱学与光谱分析, 2012, 32(3): 602-605.
[10] Body D, Chadwick B L. Optimization of the spectral data processing in a LIBS simultaneous elemental analyses system [J]. Spectrochim. Acta Part B, 2001, 56(6): 725-736.
[11] Dudragne L, Adam P, Amouroux J. Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of F, Cl, S, and C in air [J]. Appl. Spectrosc., 1998, 52(10): 1321-1327.
[12] Obernberger I, Thek G. Physical characterisation and chemical composition of densified biomass fuels with regard to their combustion behavior [C]. Proceedings of the 1st World Conference on Pallets, 2002: 115-122.
[13] Ottesen D K, Baxter L L, Radziemski L J, et al. Laser spark emission spectroscopy for in-situ, real-time monitoring of pulverized coal particle composition [J]. Energ. Fuel., 1991, 5(2): 304-312.
[14] Krasniker R, Bulatov V, Schechter I. Study of matrix effects in laser plasma spectroscopy by shock wave propagation [J]. Spectrochim. Acta Part B, 2001, 56(6): 609-618.
[15] Vrenegor J, Noll R, Sturm V. Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements [J]. Spectrochim. Acta Part B, 2005, 60(7-8): 1083-1091.
[16] Laville S, Sabsabi M, Doucet F R. Multi-elemental analysis of solidified mineral melt samples by laser-induced breakdown spectroscopy coupled with a linear multivariate calibration [J]. Spectrochim. Acta Part B, 2007, 62(12): 1557-1566.
[17] NIST Atomic Spectra Database [OL]. http://physics.nist.gov/PhysRefData/ASD/lines_form.html. |