[1] Bernard R. Etude interferentielle de laradiation jaune λ5893 ? du ciel crepusculaire et preuve de la presence du sodium dans la haute atmosphere [M]. Paris: C. R. Acad. Sci., 1938. 928-930.
[2] Bowman M, Gibson A, Sandford M. Atmospheric sodium measured by a tuned laser radar [J]. Nature, 1969, 221: 456-457.
[3] Clemesha B, Kirchhoff V, Simonich D M, et al. Evidence of an extra-terrestrial source for the mesospheric sodium layer [J]. Geophys. Res. Lett., 1978, 5(10): 873-876.
[4] Chapman S. Notes on atmospheric sodium [J]. Astrophys. J., 1939, 90: 309-316.
[5] Plane J. The chemistry of meteoric metals in the Earth's upper atmosphere [J]. International Reviews in Physical Chemistry, 1991, 10(1): 55-106.
[6] Gardner C, Voelz D. Lidar studies of the nighttime sodium layer over Urbana, Illinois, 2. Gravity waves [J]. J. Geophys. Res., 1987, 92(A5): 4673-4694.
[7] Yi F, Zhang S, Zeng H, et al. Lidar observations of sporadic Na layers over Wuhan (30.5°N, 114.4°E) [J]. Geophys. Res. Lett., 2002, 29(9): 1345.
[8] Yang G, Clemesha B, Paulo B, et al. Improvement in the technique to extract gravity wave parameters from lidar data [J]. J. Geophys. Res., 2008, 113: D19111.
[9] Hecht J H, Waltersheid R L, Fritts D C, et al. Wave breaking signatures in OH airglow and sodium densities and temperatures, 1. Airglow imaging, Na lidar, and MF radar observations [J]. J. Geophys. Res., 1997, 102(D6): 6655-6668.
[10] Fritts D C, Isler J R, Hecht J H, et al. Wave breaking signatures in OH airglow and sodium densities and temperatures, 2. Simulation of wave and instability structures [J]. J. Geophys. Res., 1997, 102(D6): 6669-6684.
[11] Collins R L, Smith R W. Evidence of damping and overturning of gravity waves in the Arctic mesosphere: Na lidar and OH temperature observations [J]. J. Atmos. Terr. Phys., 2004, 66(10): 867-879.
[12] Xu J, Smith A K, Collins R L, et al. Signature of an overturning gravity wave in the mesospheric sodium layer: Comparison of a nonlinear photochemical-dynamical model and lidar observations [J]. J. Geophys. Res., 2006, 111(D17): D17301.
[13] Fritts D, Alexander M. Gravity wave dynamics and effects in the middle atmosphere [J]. Reviews of Geophysics, 2003, 41(1): 3-3.
[14] Fritts D C, Isler J R, Andreassen I. Gravity wave breaking in two and three dimensions 2. Three-dimensional evolution and instability structure [J]. J. Geophys. Res., 1994, 99(D4): 8109-8123.
[15] Wang C. New chains of space weather monitoring stations in China [J]. Space Weather, 2010, 8(8): S08001.
[16] Gong S, Yang G, Xu J, et al. Statistical characteristics of atmospheric gravity wave in the mesopause region observed with a sodium lidar at Beijing, China [J]. J. Atmos. Terr. Phys., 2013, 97: 143-151.
[17] Kirchhoff V, Clemesha B, Simonich D. The atmospheric neutral sodium layer. I- Recent modeling compared to measurements [J]. J. Geophys. Res., 1981, 86: 6892-6898.
[18] Plane J, Cox R, Rollason R. Metallic layers in the mesopause and lower thermosphere region [J]. Advances in Space Research, 1999, 24(11): 1559-1570.
[19] Xu J, Smith A K. Evaluation of processes that affect the photochemical timescale of the sodium layer [J]. J. Atmos. Terr. Phys., 2005, 67: 1216-1225.
[20] Yang G, Clemesha B, Paulo B, et al. Lidar study of the characteristics of gravity waves in the mesopause region at a southern low-latitude location [J]. J. Atmos. Terr. Phys., 2008, 70(7): 991-1011.
[21] Zhou Q, Mathews J D. Generation of sporadic sodium layers via turbulent heating of the atmosphere? [J]. J. Atmos. Terr. Phys., 1995, 57(11): 1309-1315.
[22] States R J, Gardner C. Structure of the mesospheric Na layer at 40°N latitude: seasonal and diurnal variations [J]. J. Geophys. Res., 1999, 104: 11783-11798. |