[1] Brown S S, Stutzb J. Nighttime radical observations and chemistry [J]. Chem. Soc. Rev., 2012, 41(19): 6405-6447.
[2] Vrekoussis M, Kanakidou M, Mihalopoulos N, et al. Role of the NO3 radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign [J]. Atmos. Chem. Phys., 2004, 4: 169-182.
[3] Wayne R P, Barnes I, Biggs P, et al. The nitrate radical: Physics, chemistry and the atmosphere [J]. Atmos. Environ., 1991, 25(1): 1-203.
[4] Stutz J, Alicke B, Ackermann R, et al. Vertical profiles of NO3, N2O5,O3, and NOx in the nocturnal boundary layer: Observations during the Texas air quality study 2000 [J]. J. Geophys. Res., 2004, 109(D16): D12306.
[5] Geyer A, Alicke B, Mihelcic D, et al. Comparison of tropospheric NO3 radical measurements by differential optical absorption spectroscopy and matrix isolation electron spin resonance [J]. J. Geophys. Res.-Atmos., 1999, 104 (D21): 26097-26105.
[6] Winer M, Atkinson R, Pitts J N. Gaseous nitrate radical: possible nighttime atmospheric sink for biogenic organic compounds [J]. Science, 1984, 224: 156-159.
[7] Atkinson R. Kinetic sand mechanisms of the gas-phase reactions of the NO3 radical with organic compounds [J]. J. Phys. Chem. Ref. Data, 1991, 20(3): 459-507.
[8] Andreae M O, Raemdonck H. Dimethyl sulphide in the surface ocean and the marine atmosphere: a global view [J]. Science, 1983, 221(4612): 744-747.
[9] Geyer A, Alicke B, Konrad S, et al. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin [J]. J. Geophys. Res., 2001, 106(D8): 8013-8025.
[10] Platt U, Alicke B, Dubois R, et al. Free radicals and fast photochemistry during BERLIOZ [J]. J. Atmos. Chem., 2002, 42(1): 359-394.
[11] Allan B J, Carslaw N, Coe H, et al. Observations of the nitrate radical in the marine boundary layer [J]. J. Atmos. Chem., 1999, 33(2): 129-154.
[12] Brasseur G P, Solomon S. Aeronomy of the Middle Atmosphere: Chemistry and Physics of the Stratosphere and Mesosphere [M]. Berlin: Sringer, 2005.
[13] Keys J G, Gardiner B G. NO2 overnight decay and layer height at halley bay, antarctca [J]. Geophys. Res. Lett, 1991, 18(4): 665-668.
[14] Platt U, Perner D, Winer A M, et al. Detection of NO3 in the polluted troposphere by differential optical absorption [J]. Geophys. Res. Lett., 1980, 7(1): 89 -92.
[15] Slusher D L, Huey L G, Tanner D J, et al. A thermal dissociation-chemical ionization mass spectrometry(TD-CIMS) technique for the simultaneous measurement of peroxyacyl nitrates and dinitrogen pentoxide [J]. J. Geophys. Res, 2004, 109: D19315.
[16] Wood E C, Bertram T H, Wooldridge P J, et al. Measurements of N2O5, NO2, and O-3 east of the San Francisco Bay [J]. Environ. Sci. Technol., 2005, 5(2): 483-491.
[17] Wagner N L, Dub´e W P, Washenfelder R A, et al. Diode laser-based cavity ring-down instrument for NO3, N2O5, NO, NO2 and O3 from aircraft [J]. Atmos. Meas. Tech., 2011, 4(6): 1227-1240. [18] Atkinson R, Winer A M, PittsJ N. Estimation of nighttime N2O5 concentrations from ambient NO2 and NO3 radical concentrations and the role of N2O5 in nighttime chemistry [J] . Atmos. Environ, 1986, 20(2): 331-339.
[19] Langridge J M, Ball S M, Shillings A J L, et al. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection [J]. Rev. Sci. Instrum., 2008, 79(12): 123110.
[20] Bitter M, Ball1 S M, Povey I M, et al. A broadband cavity ringdown spectrometer for in-situ measurements of atmospheric trace gases [J]. Atmos. Chem. Phys., 2005, 5(9): 2547-2560.
[21] Wu T, Coeur-Tourneur C, Dhont G, et al. Simultaneous monitoring of temporal profiles of NO3, NO2 and O-3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications [J]. J. Quant. Spectrosc. Rad. Trans., 2014, 133: 199-205.
[22] Meinen J, Thieser J, Platt U, et al. Technical note: usinga high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS [J]. Atmos. Chem. Phys., 2010, 10(8): 3901-3914.
[23] Schuster G, Labazan I, Crowley J N. A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5 [J]. Atmos. Meas. Tech., 2009, 2(1): 1-13.
[24] Geyer A, Ackermann R, Dubois R, et al. Long-term observation of nitrate radicals in the continental boundary layer near Berlin [J]. Atmos. Environ., 2001, 35(21): 3619-3631.
[25] Mihelcic D, Volzthomas A, Patz H W, et al.Numerical-analysis of ESR-spectra from atmospheric samples [J]. J. Atmos. Chem., 1990, 11(3): 271-297.
[26] Odame-Ankrah C A, Osthoff H D. A compact diode laser cavity ring-down spectrometer for atmospheric measurements of NO3 and N2O5 with automated zeroing and calibration [J]. Appl. Spectrosc., 2011, 65(11): 1260-1268.
[27] Matsumoto J, Kosugi N, Imai H, et al. Development of a measurement system for nitrate radical and dinitrogen pentoxide using a thermal conversion/laser-induced fluorescence technique [J]. Rev. Sci.Instrum., 2005, 76(6): 064101-064101-11.
[28] Li S W, Liu W Q, Xie P H, et al. Observation of the nighttime nitrate radical in Hefei, China [J]. J. Environ. Sci., 2008, 20(1): 45-49.
[29] Wang S S, Shi C Z, Zhou B, et al. Observation of NO3 radicals over Shanghai, China [J]. J. Atmos. Environ., 2013, 70: 401-409.
[30] Wang X, Wang T, Yan C, et al. Large daytime signals of N2O5 and NO3 inferred at 62 amu in aTD-CIMS: chemical interference or a real atmospheric phenomenon? [J]. Atmospheric Measurement Techniques, 2014, 7: 1-12.
[31] Vrekoussis M, Mihalopoulos N, Gerasopoulos E, et al. Two-years of NO3 radical observations in the boundary layer over the Eastern Mediterranean [J]. Atmos. Chem. Phys., 2007, 7(2): 315-327.
[32] Asaf D, Pedersen D, Matveev V, et al. Long-term measurements of NO3 radical at a semiarid urban site: 1. extreme concentration events and their oxidation capacity [J]. Environ. Sci. Technol., 2009, 43(24): 9117-9123.
[33] Platt U. Spectroscopic measurement of free-radicals(OH, NO3) in the atmosphere [J]. Fresenius’ J. Anal. Chem, 1991, 340(10): 633-637.
[34] Platt U, Janssen C. Observation and role of the free radicals NO3, ClO, BrO and IO in the troposphere [C]. Faraday Discuss., 1995, 100: 175-198.
[35] Smith J P, Solomon S. Atmospheric NO3.3.sunrise disappearance and the stratospheric profile [J]. J. Geophys. Res., [Atmos.], 1990, 95(D9): 13819-13827.
[36] Aliwell S R, Jones R L. Measurements of tropospheric NO3 at midlatitude [J]. J. Geophys. Res., [Atmos.], 1998, 103(D5): 5719-5727.
[37] Coe H, Allan B J, Plane J M C. Retrieval of vertical profiles of NO3 from zenith sky measurements using an optimal estimation method [J]. J. Geophys. Res., [Atmos.], 2002, 107(D21): 4587.
[38] Friedeburg C, Wagner T, Geyer A, et al. Derivation of tropospheric NO3 profiles using off-axis differential optical absorption spectroscopy measurements during sunrise and comparison with simulations [J]. J. Geophys. Res., [Atmos.], 2002, 107(D13): 4168.
[39] Smith J P, Solomon S, Sanders R W, et al. Atmospheric NO3: 4 .vertical profiles at middle and polar latitudes at sunrise [J]. J. Geophys. Res., 1993, 98(D5): 8983-8989.
[40] Burrows J P, Tyndall G S, Moortgat G K, et al. Absorption spectrum of NO3 and kinetics of the reactions of NO3 with NO2, Cl, and several stable atmospheric species at 298 K [J]. J. Phys.Chem., 1985, 89(22): 4848-4856.
[41] Wagner T, Otten C, Pfeilsticker K, et al. DOAS moonlight observation of atmospheric NO3 in the Arctic winter [J]. Geophys. Res. Lett., 2000, 27(21): 3441-3444.
[42] Norton R B, Noxon J F, et al. Dependence of stratospheric NO3 upon latitude and season [J]. J. Geophys. Res., 1986, 91(4): 5323-5330.
[43] Shi Peng, Xie Pinhua, Li Ang, et al. Measurement of nitrate radical in the atmosphere by direct moonlight passive differential optical absorption spectroscopy [J]. Acta Optica Sinica, 2010, 30(12): 3643-3648(in Chinese).
石鹏, 谢品华, 李昂, 等. 基于直射月光的差分吸收光谱技术测量大气NO3 自由基 [J]. 光学学报, 2010, 30(12): 3643-3648.
[44] Mihelcic D, Klemp D, Musgen P, et al. Simultaneous measurements of peroxy and nitrateradicals at Schauinsland [J]. J. Atmos. Chem., 1993, 16(4): 313-335.
[45] Hu J H, Abbatt J P D. Reaction probabilities for N2O5 hydrolysis on sulfuric acid and ammonium sulfate aerosols at room temperature [J]. J. Phys. Chem. A, 1997, 101(5): 871-878.
[46] Thornton J A, Braban C F, Abbatt J P D. N2O5 hydrolysis on sub-micron organic aerosols: the effect of relative humidity, particle phase, and particle size [J]. Phys. Chem. Chem. Phys., 2003, 5(20): 4593-4603.
[47] Thornton J A, Abbat J P D. N2O5 reaction on submicron sea salt aerosol: Kinetics, products, and the effect of surface active organics [J]. J. Phys. Chem. A, 2005, 109(44): 10004-10012.
[48] Chang W L, Bhave P V, Brown S S, et al. Heterogeneous atmospheric chemistry, ambient measurements, and model calculations of N2O5: A review [J]. Aerosol. Sci. Tech., 2011, 45(6): 665-695.
[49] Wood E C, Wooldridge P J, Freese J H, Albrecht T, Cohen R C .Prototype for in situ detection of atmospheric NO3 and N2O5 via laser-induced fluorescence [J]. Environ. Sci. Technol, 2003, 37(24): 5732-5738.
[50] Matsumoto J, Imai H, Kosugi N, et al. In situ measurementof N2O5 in the urban atmosphere by thermal decomposition/laser-induced fluorescence technique [J]. Atmos. Environ., 2005, 39(36): 6802-6811.
[51] Matsumoto J, Imagawa K, Imai H, et al. Nocturnal sink of NOx via NO3 and N2O5 in the outflowfrom a source area in Japan [J]. Atmos. Environ., 2006, 40(33): 6294-6302.
[52] Engeln R, Berden G, Peeters R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy [J]. Rev. Sci. Instrum., 1998, 69(11): 3763-3769.
[53] Ball S M, Langridge J M, Jones R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes [J]. Chem. Phys. Lett., 2004, 398(1): 68-74.
[54] Venables D S, Gherman T, Orphal J, et al. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity enhanced absorption spectroscopy [J]. Environ. Sci. Technol., 2006, 40(21): 6758-6763.
[55] Kennedy O J, Ouyang B, Langridge J M, et al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3,N2O5 and NO2 [J]. Atmos. Meas. Tech., 2011, 4: 1759-1776.
[56] Varma R M, Venables D S, Ruth A A, et al. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction [J]. Appl. Opt., 2009, 48(4): B150-B171.
[57] King M D, Dick E M, Simpson W R. A new method for the atmospheric detection of the nitrate radical (NO3) [J]. Atmos. Environ., 2000, 34(5): 685-688.
[58] Brown S S, Stark H, Ciciora S J, et al. In-situ measurement of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy [J]. Geophys. Res. Lett., 2001, 28(17): 3227-3230.
[59] Simpson W R. Continuous wave cavity ring-down spectroscopy applied to in situ detection of dinitrogen pentoxide (N2O5) [J]. Rev. Sci. Instrum., 2003, 74(7): 3442-3452.
[60] Hu Renzhi, Wang Dan, Xie Pinhua, et al. Diode laser cavity ring down spectroscopy for atmospheric NO3 radical measurement [J]. Acta Physica Sinica, 2014, 63(11): 110707(in Chinese).
胡仁志, 王丹, 谢品华, 等. 二极管激光腔衰荡光谱测量大气NO3自由基 [J]. 物理学报, 2014, 63(11): 110707.
[61] Dub´e W P, Brown S S, Osthoff H D, et al. Aircraft instrument for simultaneous, in-situ measurements of NO3 and N2O5 via cavity ring-down spectroscopy [J]. Rev. Sci. Instrum., 2006, 77(3): 034101.
[62] Fuchs H, Dub´e W P, Ciciora S J, et al. Determination of inlet transmission and conversion efficiencies for in situ measurements of the nocturnal nitrogen oxides, NO3, N2O5 andNO2, via pulsed cavity ring-down spectroscopy [J]. Anal. Chem., 2008, 80(15): 6010-6017.
[63] Brown S S, Stark H, Ryerson T B, et al. Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3 [J]. J. Geophys. Res., 2003b, 108(D9): 4299.
[64] Brown S S, Dibb J E, Stark H, et al. Nighttime removal of NOx in the summer marine boundary layer [J]. Geophys. Res. Lett., 2004, 31(7): L07108.1- L07108.5.
[65] Brown S S, Dub´e W P, Osthoff H D, et al. High resolution vertical distributions of NO3 and N2O5 through the nocturnal boundary layer [J]. Atmos. Chem. Phys, 2007, 7(1): 139-149.
[66] Brown S S, Dube W P, Bahreini R, e t al. Biogenic VOC oxidation and organic aerosol formation in an urban nocturnal boundary layer: aircraft vertical profiles in Houston, TX [J]. Atmos. Chem. Phys., 2013, 13(22): 11317-11337.
[67] Dorn H P, Apodaca R L, Ball S M, et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR [J]. Atmos. Meas. Tech., 2013, 6: 1111-1140.
[68] Asaf D, Tas E, Pedersen D, et al. Long-term measurements of NO3 radical at a semiarid urban site: 2. seasonal trends and loss mechanisms [J]. Environ. Sci. Technol., 2010, 44(15): 5901-5907.
[69] Heintz F, Platt U, Flentje H, et al. Long-term observation of nitrate radicals at the Tor Station, Kap Arkona [J]. J. Geophys. Res., 1996, 101(D17): 22891-22910.
[70] McLaren R, Wojtal P, Majonis D, et al. NO3 radical measurements in a polluted marine environment: links to ozone formation [J]. Atmos. Chem. Phys., 2010, 10(9): 4187-4206.
[71] Li S W, Liu W Q, Xie P H, et al. Observation of nitrate radical in the nocturnal boundary layer during a summer field campaign in Pearl River Delta, China [J]. Terrestrial Atmospheric and Oceanic Sciences, 2012, 23(1): 39-48.
[72] Matsumoto J, Imagawa K, Imai H, et al. Nocturnal sink of NOx via NO3 and N2O5 in the outflow from a source area in Japan [J]. Atmos. Environ., 2010, 40(33): 6294-6302. |