[1] Khorsandi A, Shabani Z, Ranjbar M, et al. Application of a characterized difference-frequency laser source to carbon monoxide trace detection [J]. Chin. Phys. B, 2012, 21(6): 064213.
[2] Dong L, Zhang L, Dou H, et al. Analysis of the influence of various effects on frequency shifts of the acetylene saturated absorption lines [J]. Chin. Phys. B, 2008, 17(1): 152.
[3] Wu Hongpeng, Dong Lei, Zheng Huadan, et al. Purity analysis of helium using quartz-enhanced photoacoustic spectroscopy with two non-resonant micro-tubes [J]. Acta Physica Sinica, 2013, 62(7): 070701(in Chinese).
武红鹏, 董磊, 郑华丹, 等. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究 [J]. 物理学报, 2013, 62(7): 070701.
[4] Zheng Huadan, Dong Lei, Liu Yanyan, et al. Experimental research on optimization of QEPAS based spectrophone [J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3187-3191(in Chinese).
郑华丹, 董磊, 刘研研, 等. 石英晶振用于石英增强光声光谱系统的优化实验研究 [J]. 光谱学与光谱分析, 2013, 33(12): 3187-3191.
[5] Kosterev A A, Tittel F K, Serebryakov D V, et al. Applications of quartz tuning forks in spectroscopic gas sensing [J]. Rev. Sci. Instrum., 2005, 76(4): 043105.
[6] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Quartz-enhanced photoacoustic spectroscopy [J]. Opt. Lett., 2002, 27(21): 1902-1904.
[7] Dong L, Kosterev A A, Thomazy D, et al. QEPAS spectrophones: design, optimization, and performance [J]. Appl. Phys. B, 2010, 100(3): 627-635.
[8] Lewicki R, Wysocki G, Kosterev A A, et al. QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 μm [J]. Opt. Express, 2007, 15(12): 7357-7366.
[9] Miklós A, Hess P, Bozóki Z. Application of acoustic resonators in photoacoustic trace gas analysis and metrology [J]. Rev. Sci. Instrum., 2001, 72(4): 1937.
[10] Kosterev A A, Tittel F K. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser [J]. AAPL Options, 2004, 43(33): 6213-6217.
[11] Spagnolo V, Dong L, Kosterev A A, et al. Modulation cancellation method in laser spectroscopy [J]. Appl. Phys. B, 2011, 103(3): 735-742.
[12] Dong L, Wright J, Peters B, et al. Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen [J]. Appl. Phys. B, 2012, 107(2): 459-467. [13] Kosterev A A, Dong L, Thomazy D, et al. QEPAS for chemical analysis of multi-component gas mixtures [J]. Appl. Phys. B, 2010, 101(3): 649-659.
[14] Spagnolo V, Patimisco P, Borri S, et al. Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation [J]. Opt. Lett., 2012, 37(21): 4461-4463.
[15] Kosterev A A, Buerki P R, Dong L, et al. QEPAS detector for rapid spectral measurements [J]. Appl. Phys. B, 2010,100(1): 173.
[16] Dong L, Kosterev A A, Thomazy D, et al. NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser [J]. Appl. Phys. B, 2010, 100: 627.
[17] Liu K, Yi H, Kosterev A A, et al. Trace gas detection based on off-beam quartz enhanced photoacoustic spectroscopy: Optimization and performance evaluation [J]. Rev.Sci. Instrum., 2010, 81(10): 103103.
[18] Petra N, Zweck J, Kosterev A A, et al. Theoretical analysis of a quartz-enhanced photoacoustic spectroscopy sensor [J]. Appl. Phys. B, 2009, 94(4): 673-680.
[19] Dong L, Spagnolo V, Lewicki R, et al. Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor [J]. Opt. Express, 2011, 19(24): 24037-24045. |