[1] Zhang R, Khalizov A, Wang L, et al. Nucleation and growth of nanoparticles in the atmosphere [J]. Chem. Rev., 2011. 112(3): 1957-2011.
[2] Chen Y, Penner J E. Uncertainty analysis for estimates of the first indirect aerosol effect [J]. Atmos. Chem. Phys., 2005, 5(11): 2935-2948.
[3] Lohmann U, Feichter J. Global indirect aerosol effects: a review [J]. Atmos. Chem. Phys., 2005, 5(3): 715-737. [4] Fan J, Zhang R, Tao W K, et al. Effects of aerosol optical properties on deep convective clouds and radiative forcing [J]. J. Geophys. Res.: Atmos. (1984–2012), 2008, 113(D8): 1-16.
[5] Covert D S, Kapustin V N, Quinn P K, et al. New particle formation in the marine boundary-layer [J]. J. Geophys. Res.-Atmos., 1992, 97(D18): 20581-20589.
[6] Christensen P S, Wedel S, Livbjerg H. The kinetics of the photolytic production of aerosols from SO2 and NH3 in humid air [J]. Chem. Eng. Sci., 1994, 49(24):4605-4614.
[7] Weber R, McMurry P H, Mauldin R, et al. New particle formation in the remote troposphere: A comparison of observations at various sites [J]. Geophys. Res. Lett., 1999, 26(3): 307-310.
[8] Kulmala M, Pirjola L, Mäkelä J M. Stable sulphate clusters as a source of new atmospheric particles [J]. Nature, 2000. 404(6773): 66-69.
[9] Harrington D Y, Kreidenweis S M. Simulations of sulfate aerosol dynamics—I: Model description [J]. Atmos. Environ., 1998, 32(10): 1691-1700.
[10] Kulmala M, Laaksonen A, Pirjola L. Parameterizations for sulfuric acid/water nucleation rates [J]. J. Geophys. Res.: Atmos. (1984–2012), 1998, 103(D7): 8301-8307.
[11] Vehkamäki H, Kulmala M, Napari I, et al. An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions [J]. J. Geophys. Res.: Atmos. (1984–2012), 2002, 107(D22): AAC 3-1-AAC 3-10.
[12] Yu F. Updated H2SO4-H2O binary homogeneous nucleation look-up tables [J]. J. Geophys. Res.: Atmos. (1984–2012), 2008, 113(D24): 1-5.
[13] Sipilä M, Berndt T, Petäjä T, et al. The role of sulfuric acid in atmospheric nucleation [J]. Science, 2010, 327(5970): 1243-1246.
[14] Hoppel W, Frick G, Fitzgerald J, et al. Marine boundary layer measurements of new particle formation and the effects nonprecipitating clouds have on aerosol size distribution [J]. J. Geophys. Res.: Atmos. (1984–2012), 1994, 99(D7): 14443-14459.
[15] Clarke A, Davis D, Kapustin V, et al. Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources [J]. Science, 1998, 282(5386): 89-92.
[16] O'Dowd C, McFiggans G, Creasey D J, et al. On the photochemical production of new particles in the coastal boundary layer [J]. Geophys. Res. Lett., 1999. 26(12): 1707-1710.
[17] Weber R J, McMurry P H, Mauldin L, et al. A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1 [J]. J. Geophys. Res.: Atmos. (1984–2012), 1998, 103(D13): 16385-16396.
[18] Ball S, Hanson D, Eisele F, et al. Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors [J]. J. Geophys. Res.: Atmos. (1984–2012), 1999, 104(D19): 23709-23718.
[19] Merikanto J, Napari I, Vehkamäki H, et al. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions [J]. J. Geophys. Res.: Atmos. (1984–2012), 2007, 112(D15): 1-9.
[20] Turco R P, Zhao J X, Yu F. A new source of tropospheric aerosols: Ion-ion recombination [J]. Geophys. Res. Lett., 1998, 25(5): 635-638.
[21] Wilson C T R. The Effect of Rontgen's Rays on Cloudy Condensation [J]. Proceedings of the Royal Society of London, 1895, 59(353-358): 338-339.
[22] Wilson C T R. On the condensation nuclei produced in gases by the action of Rontgen rays, Uranium rays, Ultra-violet light, and other agents [J]. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1899: 403-453.
[23] Megaw W, Wiffen R. The generation of condensation nuclei by ionising radiation [J]. Pure Appl. Geophys., 1961, 50(1):118-128.
[24] Bricard J, Billard F, Madelaine G. Formation and evolution of nuclei of condensation that appear in air initially free of aerosols [J]. J. Geophys. Res., 1968. 73(14): 4487-4496.
[25] Vohra K, Ramu M S, Muraleedharan T. An experimental study of the role of radon and its daughter products in the conversion of sulphur dioxide into aerosol particles in the atmosphere [J]. Atmos. Environ.(1967), 1984, 18(8): 1653-1656.
[26] Raes F, Janssens A, Eggermont G. A synergism between ultraviolet and gamma radiation in producing aerosol particles from SO2-H2SO4 laden atmospheres [J]. Atmos. Environ. (1967), 1985, 19(7): 1069-1073.
[27] Rabeony H, Mirabel P. Experimental study of vapor nucleation on ions [J]. J. Phys. Chem., 1987, 91(7): 1815-1818.
[28] Adachi M, Okuyama K, Seinfeld J H. Experimental studies of ion-induced nucleation [J]. J. Aerosol Sci., 1992, 23(4): 327-337.
[29] Kim T O, Adachi M, Okuyama K, et al. Experimental measurement of competitive ion-induced and binary homogeneous nucleation in SO2/H2O/N2 mixtures [J]. Aerosol Sci. Technol., 1997, 26(6): 527-543.
[30] Kim C S, Adachi M, Okuyama K, et al. Effect of NO2 on particle formation in SO2 /H2O/Air mixtures by ion-induced and homogeneous nucleation [J]. Aerosol Sci. Technol., 2002, 36(9): 941-952.
[31] Eichkorn S, Wilhelm S, Aufmhoff H, et al. Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere [J]. Geophys. Res. Lett., 2002, 29(14): 43-1-43-4.
[32] Laakso L, Anttila T, Lehtinen K E, et al. Kinetic nucleation and ions in boreal forest particle formation events [J]. Atmos. Chem. Phys., 2004, 4(9/10): 2353-2366.
[33] Laakso L, Petäjä T, Lehtinen K, et al. Ion production rate in a boreal forest based on ion, particle and radiation measurements [J]. Atmos. Chem. Phys., 2004, 4(7):1933-1943.
[34] Iida K, Stolzenburg M, McMurry P, et al. Contribution of ion-induced nucleation to new particle formation: Methodology and its application to atmospheric observations in Boulder, Colorado [J]. J. Geophys. Res.: Atmos.(1984–2012), 2006. 111(D23): 1-16.
[35] Laakso L, Gagné S, Petäjä T, et al. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements [J]. Atmos. Chem. Phys., 2007, 7(5): 1333-1345.
[36] Kulmala M, Riipinen I, Sipila M, et al. Toward direct measurement of atmospheric nucleation [J]. Science, 2007, 318(5847): 89-92.
[37] Li Q, Jiang J, Hao J. A review of aerosol nanoparticle formation from ions [J]. KONA Powder Part. J., 2015, 32: 57-74.
[38] Beringer J, Arguin J, Barnett R, et al. Review of particle physics [J]. Phys. Rev. D, 2012, 86(1): 368-380.
[39] Luts A, Salm J. Chemical composition of small atmospheric ions near the ground [J]. J. Geophys. Res.: Atmos. (1984–2012), 1994, 99(D5): 10781-10785.
[40] Beig G, Brasseur G P. Model of tropospheric ion composition: A first attempt [J]. J. Geophys. Res.: Atmos. (1984–2012), 2000, 105(D18): 22671-22684.
[41] Harrison R G, Tammet H. Ions in the terrestrial atmosphere and other solar system atmospheres [J]. Space Sci. Rev., 2008, 137(1-4): 107-118.
[42] Rosen J M, Hofmann D J. Balloon-borne measurements of electrical conductivity, mobility, and the recombination coefficient [J]. J. Geophys. Res.: Oceans (1978–2012), 1981, 86(C8): 7406-7410.
[43] McMurry P H, Fink M, Sakurai H, et al. A criterion for new particle formation in the sulfur-rich Atlanta atmosphere [J]. J. Geophys. Res.: Atmos. (1984–2012), 2005, 110(D22): 1-10.
[44] Kuang C, Riipinen I, Sihto S-L, et al. An improved criterion for new particle formation in diverse atmospheric environments [J]. Atmos. Chem. Phys., 2010, 10(17): 8469-8480.
[45] Arnold F. Atmospheric Ions and Aerosol Formation [A]. //F. Leblanc, et al. Planetary Atmospheric Electricity [M]. New York: Springer, 2008: 225-239.
[46] Harrison R, Carslaw K. Ion-aerosol-cloud processes in the lower atmosphere [J]. Rev. Geophys., 2003, 41(3): 1-26.
[47] Kulmala M. How particles nucleate and grow [J]. Science, 2003, 302(5647): 1000-1001.
[48] Yu F. From molecular clusters to nanoparticles: second-generation ion-mediated nucleation model [J]. Atmos. Chem. Phys., 2006, 6(12): 5193-5211.
[49] Curtius J, Lovejoy E R, Froyd K D. Atmospheric ion-induced aerosol nucleation [J]. Space Sci. Rev., 2006, 125(1-4): 159-167.
[50] Kanawade V, Tripathi S. Evidence for the role of ion-induced particle formation during an atmospheric nucleation event observed in Tropospheric Ozone Production about the Spring Equinox (TOPSE) [J]. J. Geophys. Res.: Atmos. (1984–2012), 2006, 111(D2): 1-11.
[51] Gu Xuejun, Hu Changjin, Gai Yanbo, et al. Experimental evaluation of aerosol formation in SO2/H2O/Air mixtures [J]. China Environ. Sci., 2015, 35(3): 700-705(in Chinese).
顾学军, 胡长进, 盖艳波, 等. 二氧化硫/水/空气体系气溶胶成核实验研究 [J]. 中国环境科学, 2015, 35(3): 700-705.
[52] Nadykto A B, Yu F. Strong hydrogen bonding between atmospheric nucleation precursors and common organics [J]. Chem. Phys. Lett., 2007, 435(1): 14-18.
[53] Nieminen T, Manninen H, Sihto S-L, et al. Connection of sulfuric acid to atmospheric nucleation in boreal forest [J]. Environ. Sci. Technol., 2009, 43(13): 4715-4721.
[54] Zhao J, Khalizov A, Zhang R, et al. Hydrogen-bonding interaction in molecular complexes and clusters of aerosol nucleation precursors [J]. J. Phys. Chem. A, 2009, 113(4): 680-689.
[55] Zhang R. Getting to the critical nucleus of aerosol formation [J]. Science, 2010, 328(5984): 1366-1367.
[56] Hõrrak U, Salm J, Tammet H. Statistical characterization of air ion mobility spectra at Tahkuse Observatory: Classification of air ions [J]. J. Geophys. Res.: Atmos. (1984–2012), 2000, 105(D7): 9291-9302.
[57] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol [J]. Nature, 2014, 506(7489): 476-9.
[58] Ayers G, Gillett R, Gras J. On the vapor pressure of sulfuric acid [J]. Geophys. Res. Lett., 1980, 7(6): 433-436. [59] Zhang R, Wooldridge P J, Abbatt J P, et al. Physical chemistry of the sulfuric acid/water binary system at low temperatures: stratospheric implications [J]. J. Phys. Chem., 1993, 97(28): 7351-7358.
[60] Marti J J, Jefferson A, Cai X P, et al. H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions [J]. J. Geophys. Res.: Atmos. (1984–2012), 1997, 102(D3): 3725-3735.
[61] Castleman A, Bowen K. Clusters: Structure, energetics, and dynamics of intermediate states of matter [J]. J. Phys. Chem., 1996, 100(31): 12911-12944.
[62] Molina M J, Molina L T, Kolb C E. Gas-phase and heterogeneous chemical kinetics of the troposphere and stratosphere [J]. Annu. Rev. Phys. Chem., 1996. 47(1):327-367.
[63] Davidovits P, Kolb C E, Williams L R, et al. Mass accommodation and chemical reactions at gas-liquid interfaces [J]. Chem. Rev., 2006, 106(4): 1323-1354.
[64] Yue D, Hu M, Zhang R, et al. Potential contribution of new particle formation to cloud condensation nuclei in Beijing [J]. Atmos. Environ., 2011, 45(33):6070-6077.
[65] Carslaw K, Harrison R, Kirkby J. Cosmic rays, clouds, and climate [J]. Science, 2002. 298(5599): 1732-1737. [66] Kirkby J. Cosmic rays and climate [J]. Surv. Geophys., 2007, 28(5-6): 333-375.
[67] Bazilevskaya G, Usoskin I, Flückiger E, et al. Cosmic ray induced ion production in the atmosphere [J]. Space Sci. Rev., 2008, 137(1-4): 149-173.
[68] Williams E, Mareev E. Recent progress on the global electrical circuit [J]. Atmos. Res., 2014, 135: 208-227. [69] Nicoll K, Harrison R. Experimental determination of layer cloud edge charging from cosmic ray ionisation [J]. Geophys. Res. Lett., 2010, 37(13): 1-5.
[70] Harrison R G, Ambaum M H, Lockwood M. Cloud base height and cosmic rays [C] //Ed. by Andrew Dunn. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2011: 1-15.
[71] Rycroft M J, Harrison R G. Electromagnetic atmosphere-plasma coupling: The global atmospheric electric circuit [J]. Space Sci. Rev., 2012, 168(1-4): 363-384.
[72] Bennett A, Harrison R. Lightning-induced extensive charge sheets provide long range electrostatic thunderstorm detection [J]. Phys. Rrev. Lett., 2013, 111(4): 045003.
[73] Dickinson R E. Solar variability and the lower atmosphere [J]. Bull. Am. Meteorol. Soc., 1975, 56(12):1240-1248.
[74] Svensmark H, Friis-Christensen E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships [J]. J. Atmos. Solar-Terrestrial Phys., 1997, 59(11):1225-1232.
[75] Marsh N D, Svensmark H. Low cloud properties influenced by cosmic rays [J]. Phys. Rev. Lett., 2000, 85(23): 5004.
[76] Kazil J, Lovejoy E. A Parameterization of Neutral and Ion-Induced Water/Sulfuric Acid Aerosol Nucleation Rates for Use in Atmospheric Modeling[C] //AGU Fall Meeting Abstracts. 2005: 151.
[77] Svensmark H, Pedersen J O P, Marsh N D, et al. Experimental evidence for the role of ions in particle nucleation under atmospheric conditions [C] //Ed. by Andrew Dunn. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2007: 385-396.
[78] Winkler P M, Steiner G, Vrtala A, et al. Heterogeneous nucleation experiments bridging the scale from molecular ion clusters to nanoparticles [J]. Science, 2008, 319(5868): 1374-1377.
[79] Kirkby J, Curtius J, Almeida J, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation [J]. Nature, 2011, 476(7361): 429-433.
[80] Wilhelm S, Eichkorn S, Wiedner D, et al. Ion-induced aerosol formation: new insights from laboratory measurements of mixed cluster ions HSO4−(H2SO4)a(H2O)w and H+(H2SO4)a(H2O)w [J]. Atmos. Environ., 2004, 38(12): 1735-1744.
[81] Nagato K. Charged particle formation by the ionization of air containing sulfur dioxide [J]. Int. J. Mass Spectr., 2009. 285(1): 12-18. |