[1] Wang Z, Yuan T B, Hou Z Y, et al. Laser-induced breakdown spectroscopy in China [J]. Frontiers of Physics, 2014, 9(4): 419-438.
[2] Andrzej V P, Miziolek W, Schechter I. Laser-Induced Breakdown Spectroscopy (LIBS) – Fundamentals and Applications [M]. Cambridge, UK: Cambridge University Press, 2006.
[3] Monkhouse P. On-line spectroscopic and spectrometric methods for the determination of metal species in industrial processes [J]. Progress in Energy and Combustion Science, 2011, 37(2): 125-171.
[4] Diwakar P K, Loper K H, Matiaske A M, et al. Laser-induced breakdown spectroscopy for analysis of micro and nanoparticles [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(7): 1110-1119.
[5] Hahn D W. Laser-induced breakdown spectroscopy for analysis of aerosol particles: the path toward quantitative analysis [J]. Spectroscopy, 2010, 17: 23.
[6] Kwak J H, Kim G, Kim Y J, et al. Determination of heavy metal distribution in PM10 during Asian dust and local pollution events using laser induced breakdown spectroscopy (LIBS) [J]. Aerosol Science and Technology, 2012, 46(10): 1079-1089.
[7] Stipe C B, Miller A L, Brown J, et al. Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for measurement of silica on filter samples of coal dust [J]. Applied Spectroscopy, 2012, 66(11): 1286-1293.
[8] Park K, Cho G, Kwak J. Development of an aerosol focusing-laser induced breakdown spectroscopy (aerosol focusing-LIBS) for determination of fine and ultrafine metal aerosols [J]. Aerosol Science and Technology, 2009, 43(5): 375-386.
[9] Gallou G, Sirven J B, Dutouquet C, et al. Aerosols analysis by LIBS for monitoring of air pollution by industrial sources [J]. Aerosol Science and Technology, 2011, 45(8): 918-926.
[10] Diwakar P, Kulkarni P, Birch M E. New approach for near-real-time measurement of elemental composition of aerosol using laser-induced breakdown spectroscopy [J]. Aerosol Science and Technology, 2012, 46(3): 316-332.
[11] Diwakar P K, Kulkarni P. Measurement of elemental concentration of aerosols using spark emission spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(7): 1101-1109.
[12] R'mili B, Dutouquet C, Sirven J B, et al. Analysis of particle release using LIBS and TEM samplers when handling CNT (carbon nanotube powders) [J]. Journal of Nanoparticle Research, 2011, 13: 563-577.
[13] Tjärnhage T, Gradmark P Å, Larsson A, et al. Development of a laser-induced breakdown spectroscopy instrument for detection and classification of single-particle aerosols in real-time [J]. Optics Communications, 2013, 296: 106-108.
[14] Fortes F J, Fernández-Bravo A, Laserna J J. Chemical characterization of single micro-and nano-particles by optical catapulting–optical trapping–laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 100: 78-85.
[15] Xiong G, Li S, Zhang Y, et al. Phase-selective laser-induced breakdown spectroscopy of metal-oxide nanoparticle aerosols with secondary resonant excitation during flame synthesis [J]. Journal of Analytical Atomic Spectrometry, 2016, 31(2): 482-491.
[16] Wang Z, Deguchi Y, Kuwahara M, et al. Sensitive measurement of trace mercury using low pressure laser-induced plasma
[J]. Japanese Journal of Applied Physics, 2013, 52(11S): 11NC05.
[17] Yin H, Hou Z, Yuan T, et al. Application of spatial confinement for gas analysis using laser-induced breakdown spectroscopy to improve signal stability [J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 922-928.
[18] Hahn D W, Flower W L, Hencken K R. Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy [J]. Applied Spectroscopy, 1997, 51(12): 1836-1844.
[19] Kwak J H, Kim G, Kim Y J, et al. Determination of heavy metal distribution in PM10 during Asian dust and local pollution events using laser induced breakdown spectroscopy (LIBS) [J]. Aerosol Science and Technology, 2012, 46(10): 1079-1089.
[20] Fisher B T, Johnsen H A, Buckley S G, et al. Temporal gating for the optimization of laser-induced breakdown spectroscopy detection and analysis of toxic metals [J]. Applied Spectroscopy, 2001, 55(10): 1312-1319.
[21] Panne U, Neuhauser R E, Theisen M, et al. Analysis of heavy metal aerosols on filters by laser-induced plasma spectroscopy [J]. SpectrochimicaActa Part B: Atomic Spectroscopy, 2001, 56(6): 839-850.
[22] Stipe C B, Miller A L, Brown J, et al. Evaluation of Laser-Induced Breakdown Spectroscopy (LIBS) for measurement of silica on filter samples of coal dust [J]. Applied Spectroscopy, 2012, 66(11): 1286-1293.
[23] Dutouquet C, Gallou G, Le Bihan O, et al. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS
[J]. Talanta, 2014, 127: 75-81.
[24] Yu X, Li Y, Gu X, et al. Laser-induced breakdown spectroscopy application in environmental monitoring of water quality: a review
[J]. Environmental Monitoring and Assessment, 2014, 186(12): 8969-8980.
[25] Lee D H, Han S C, Kim T H, et al. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy [J]. Analytical Chemistry, 2011, 83(24): 9456-9461.
[26] Lo K M, Cheung N H. ArF laser-induced plasma spectroscopy for part-per-billion analysis of metal ions in aqueous solutions [J]. Applied Spectroscopy, 2002, 56(6): 682-688.
[27] Pu X Y, Ma W Y, Cheung N H. Sensitive elemental analysis of aqueous colloids by laser-induced plasma spectroscopy [J]. Applied Physics Letters, 2003, 83(16): 3416-3418.
[28] Feng Y, Yang J, Fan J, et al. Investigation of laser-induced breakdown spectroscopy of a liquid jet [J]. Applied Optics, 2010, 49(13): C70-C74.
[29] Wu J L, Fu Y X, Li Y, et al. Detection of metal ions in water solution by laser induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2008, 28(9): 1979-1982.
[30] Zhong S, Lu Y, Cheng K, et al. Ultrasonic nebulizer assisted LIBS for detection of trace metal elements dissolved in water [J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1458-1462.
[31] Zhong S L, Zheng R E, Lu Y, et al. Ultrasonic nebulizer assisted LIBS: a promising metal elements detection method for aqueous sample analysis [J]. Plasma Science and Technology, 2015, 17(11): 979-984.
[32] Aras N, Yesiller S Ü, Ate? D A, et al. Ultrasonic nebulization-sample introduction system for quantitative analysis of liquid samples by laser-induced breakdown spectroscopy [J]. SpectrochimicaActa Part B: Atomic Spectroscopy, 2012, 74: 87-94.
[33] Qian H G, Zhou W D. Determination of trace Cu in water by laser-induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2012, 32(10): 2820-2823.
[34] Lee Y, Oh S W, Han S H. Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water [J]. Applied Spectroscopy, 2012, 66(12): 1385-1396.
[35] Ni K, Lei Y, Yu Q, et al. Trace element analysis of aqueous samples by laser-induced breakdown spectroscopy based on pre-concentration of electrospray [C]. International Conference on Optical Instruments and Technology 2015. International Society for Optics and Photonics, 2015: 96210J-96210J-7.
[36] Chen Z, Li H, Liu M, et al. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(1): 64-68.
[37] Wang Yin, Zhao Nanjing, Ma Mingjun, et al. Chromium detection in water enriched with graphite based on laser-induced breakdown spectroscopy [J]. Laser Technology, 2013, 37(6): 808-811(in Chinese).
王寅, 赵南京, 马明俊, 等. 石墨富集方式下水中 Cr 元素的 LIBS 检测 [J]. 激光技术, 2013, 37(6): 808-811.
[38] Zhang Dahai, Zhao Nanjing, Yin Gaofang, et al. Application of electromagnetic induction heating technology in rapid drying of graphite enrichment of heavy metal in water [J]. Journal of Atmospheric and Environmental Optics, 2015, 10(1): 69-75(in Chinese).
张大海, 赵南京, 殷高方, 等. 电磁感应加热技术在水体重金属快速石墨富集中的应用 [J]. 大气与环境光学学报, 2015, 2015, 10(1): 69-75..
[39] Chen C, Niu G, Shi Q, et al. Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens [J]. Applied Optics, 2015, 54(28): 8318-8325.
[40] Ünal S, Yalç?n ?. Development of a continuous flow hydride generation laser-induced breakdown spectroscopic system: Determination of tin in aqueous environments [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(8): 750-757.
[41] Ye?iller S Ü, Yalç?n ?. Optimization of chemical and instrumental parameters in hydride generation laser-induced breakdown spectrometry for the determination of arsenic, antimony, lead and germanium in aqueous samples [J]. Analytica Chimica Acta, 2013, 770: 7-17.
[42] Aguirre M A, Selva E J, Hidalgo M, et al. Dispersive liquid–liquid microextraction for metals enrichment: A useful strategy for improving sensitivity of laser-induced breakdown spectroscopy in liquid samples analysis [J]. Talanta, 2015, 131: 348-353.
[43] Matsumoto A, Tamura A, Koda R, et al. On-site quantitative elemental analysis of metal ions in aqueous solutions by underwater laser-induced breakdown spectroscopy combined with electrodeposition under controlled potential [J]. Analytical Chemistry, 2015, 87(3): 1655-1661.
[44] Lu Y, Li Y, Wu J, et al. Guided conversion to enhance cation detection in water using laser-induced breakdown spectroscopy
[J]. Applied Optics, 2010, 49(13): C75-C79.
[45] Chen Z, Li H, Zhao F, et al. Ultra-sensitive trace metal analysis of water by laser-induced breakdown spectroscopy after electrical-deposition of the analytes on an aluminium surface [J]. Journal of Analytical Atomic Spectrometry, 2008, 23(6): 871-875.
[46] Zheng P, Liu H, Wang J, et al. Online mercury determination by laser-induced breakdown spectroscopy with the assistance of solution cathode glow discharge [J]. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 867-874.
[47] Wang X, Wei Y, Lin Q, et al. Simple, fast matrix conversion and membrane separation method for ultrasensitive metal detection in aqueous samples by laser-induced breakdown spectroscopy [J]. Analytical Chemistry, 2015, 87(11): 5577-5583.
[48] Rifai K, Laville S, Vidal F, et al. Quantitative analysis of metallic traces in water-based liquids by UV-IR double-pulse laser-induced breakdown spectroscopy [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(2): 276-283.
[49] Wall M, Sun Z, Alwahabi Z T. Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy [J]. Optics Express, 2016, 24(2): 1507-1517.
[50] Li Y, Lu Y, Zheng R. Effects of laser wavelength on detection of metal elements in water solution by laser induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2012, 32(3): 582-585.
[51] Tian Y, Xue B, Song J, et al. Non-gated laser-induced breakdown spectroscopy in bulk water by position-selective detection
[J]. Applied Physics Letters, 2015, 107(11): 111107.
[52] Golik S S, Bukin O A, Il’in A A, et al. Determination of detection limits for elements in water by femtosecond laser-induced breakdown spectroscopy [J]. Journal of Applied Spectroscopy, 2012, 79(3): 471-476.
[53] Ilyin A A, Golik S S. Femtosecond laser-induced breakdown spectroscopy of sea water [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 192-197.
[54] Wang Chunlong, Liu Jianguo, Zhao Nanjing, et al. Comparative analysis of quantitative method on heavy metal detection in water with laser-induced breakdown spectroscopy [J]. Acta Physica Sinica, 2013, 62(12): 125201(in Chinese).
王春龙, 刘建国, 赵南京, 等. 水体重金属激光诱导击穿光谱定量分析方法对比研究 [J]. 物理学报, 2013, 62(12): 125201.
[55] Huang L, Yao M, Xu Y, et al. Determination of Cr in water solution by laser-induced breakdown spectroscopy with different univariate calibration models [J]. Applied Physics B, 2013, 111(1): 45-51.
[56] Li Min, Zhu Xinyong, Xu Yuan, et al. Quantitative determination of Cu in lake water by laser induced breakdown spectroscopy
[J]. Laser & Optoelectronics Progress, 2013, 50(1): 13001(in Chinese).
李敏, 朱心勇, 徐媛, 等. 应用 LIBS 技术定量检测湖水样品中的铜 [J]. 激光与光电子学进展, 2013, 50(1): 13001.
[57] Sobral H, Sanginés R, Trujillo-Vázquez A. Detection of trace elements in ice and water by laser-induced breakdown spectroscopy [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 78: 62-66.
[58] Gaudiuso R, Dell’Aglio M, Pascale O D, et al. Laser induced breakdown spectroscopy for elemental analysis in environmental, cultural heritage and space applications: a review of methods and results [J]. Sensors, 2010, 10(8): 7434-7468.
[59] Chen D, Zhang Y. Influence of humidity on characteristic of laser-induced soil plasmas [J]. Spectroscopy and Spectral Analysis, 2010, 30(11): 2885-2888.
[60] Kim G, Kwak J, Kim K R, et al. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS) [J]. Journal of Hazardous Materials, 2013, 263: 754-760.
[61] Zhang L, Li X. Effect of KCl additive on laser-induced soil plasma radiation [J]. Spectroscopy and Spectral Analysis, 2010, 30(10): 2601-2605.
[62] Khumaeni A, Lie Z S, Lee Y I, et al. Rapid analyses of tiny amounts of powder samples using transversely excited atmospheric CO2 laser-induced helium gas plasma with the aid of high-vacuum silicon grease as a binder on a metal subtarget [J]. Applied Spectroscopy, 2011, 65(2): 236-241.
[63] Lin Z X, Liu L M, Liu L W. Validation of the solidifying soil process using laser-induced breakdown spectroscopy [J]. Optics & Laser Technology, 2016, 83: 13-15.
[64] Li K X, Zhou W, Shen Q, et al. Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(5): 420-424.
[65] Li X, Zhou W, Li K, et al. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil [J]. Optics Communications, 2012, 285(1): 54-58.
[66] Zhou W, Li K, Qian H, et al. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy [J]. Applied Optics, 2012, 51(7): B42-B48.
[67] Chen J, Bai J, Song G, et al. Enhancement effects of flat-mirror reflection on plasma radiation [J]. Applied Optics, 2013, 52(25): 6295-6299.
[68] Nicolodelli G, Senesi G S, Romano R A, et al. Signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy applied to different soils [J]. SpectrochimicaActa Part B: Atomic Spectroscopy, 2015, 111: 23-29.
[69] Labutin T A, Zaytsev S M, Popov A M, et al. Comparison of the thermodynamic and correlation criteria for internal standard selection in laser-induced breakdown spectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 57-64.
[70] He G C, Sun D X, Su M G, et al. A quantitative analysis of elements in soil using laser-induced breakdown spectroscopy technique
[J]. The European Physical Journal Applied Physics, 2011, 55(3): 30701.
[71] Popov A M, Labutin T A, Zaytsev S M, et al. Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry [J]. Journal of Analytical Atomic Spectrometry, 2014, 29(10): 1925-1933.
[72] Pandhija S, Rai N K, Pathak A K, et al. Calibration curve with improved limit of detection for cadmium in soil: An approach to minimize the matrix effect in laser-induced breakdown spectroscopic analysis [J]. Spectroscopy Letters, 2014, 47(8): 579-589.
[73] Dell'Aglio M, Gaudiuso R, Senesi G S, et al. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS) [J]. Journal of Environmental Monitoring, 2011, 13(5): 1422-1426.
[74] Yang N, Eash N S, Lee J, et al. Multivariate analysis of laser-induced breakdown spectroscopy spectra of soil samples [J]. Soil Science, 2010, 175(9): 447-452.
[75] Bricklemyer R S, Brown D J, Turk P J, et al. Improved intact soil-core carbon determination applying regression shrinkage and variable selection techniques to complete spectrum laser-induced breakdown spectroscopy (LIBS) [J]. Applied Spectroscopy, 2013, 67(10): 1185-1199.
[76] Martin M Z, Mayes M A, Heal K R, et al. Investigation of laser-induced breakdown spectroscopy and multivariate analysis for differentiating inorganic and organic C in a variety of soils [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 100-107.
[77] Trevizan L C, Santos D, Samad R E, et al. Evaluation of laser induced breakdown spectroscopy for the determination of micronutrients in plant materials [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(5): 369-377.
[78] El Haddad J, Bruyere D, Ismaël A, et al. Application of a series of artificial neural networks to on-site quantitative analysis of lead into real soil samples by laser induced breakdown spectroscopy [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 97: 57-64.
[79] Kim K R, Kim G, Kim J Y, et al. Kriging interpolation method for laser induced breakdown spectroscopy (LIBS) analysis of Zn in various soils [J]. Journal of Analytical Atomic Spectrometry, 2014, 29(1): 76-84.
[80] Kim G, Kwak J, Kim K R, et al. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS) [J]. Journal of Hazardous Materials, 2013, 263: 754-760.
[81] Badday M A, Bidin N, Rizvi Z H, et al. Determination of environmental safety level with laser-induced breakdown spectroscopy technique [J]. Chemistry and Ecology, 2015, 31(4): 379-387.
[82] Fortes F J, Laserna J J. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(12): 975-990.
[83] Yamamoto K Y, Cremers D A, Ferris M J, et al. Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument [J]. Applied Spectroscopy, 1996, 50(2): 222-233.
[84] Bertolini A, Carelli G, Francesconi F, et al. Modì: a new mobile instrument for in situ double-pulse LIBS analysis [J]. Analytical and Bioanalytical Chemistry, 2006, 385(2): 240-247.
[85] Hu Zhiyu, Zhang Lei, Yin Wangbao, et al. Application of laser-induced breakdown spectroscopy to coal-fired power plants and soil contaminants on-line monitoring [J]. Journal of Atmospheric and Environmental Optics, 2013, 8(1): 26-35(in Chinese).
胡志裕, 张雷, 尹王保, 等. 激光诱导击穿光谱技术在燃煤电厂及土壤污染物在线检测中的应用研究 [J]. 大气与环境光学学报, 2013, 8(1): 26-35.
[86] Wang Yin, Zhao Nanjing, Ma Mingjun, et al. Optical structure design of handheld soil heavy metal detector based on LIBS [J]. Applied Laser, 2013, 33(3): 327-332(in Chinese).
王寅, 赵南京, 马明俊, 等. 基于 LIBS 技术的手持式土壤重金属探测仪光学结构设计 [J]. 应用激光, 2013, 33(3): 327-332.
[87] Cremers D A, Barefield J E, Koskelo A C. Remote elemental analysis by laser-induced breakdown spectroscopy using a fiber-optic cable [J]. Applied Spectroscopy, 1995, 49(6): 857-860.
[88] Bousquet B, Travaillé G, Ismaël A, et al. Development of a mobile system based on laser-induced breakdown spectroscopy and dedicated to in situ analysis of polluted soils [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1085-1090. |