[1] Olivier J G J, van Aardenne J A, Dentener F J, et al. Recent trends in globalgreenhouse gas emissions: regional trends 1970–2000 and spatialdistribution of key sources in 2000 [J]. Environ. Sci., 2005, 2 (2/3): 81-99.
[2] Bond T C, Streets D G, Yarber K F, et al. A technology-based global inventory of black and organic carbon emissions from combustion [J]. J. Geophys. Res., 2004,109(D14): D14203.
[3] Andreae M O, Rosenfeld D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols [J]. Earth Sci. Rev., 2008, 89(1): 13-41.
[4] Pfister G G, Wiedinmyer C, Emmons L K. Impacts of thefall 2007 California wildfires on surface ozone: Integrating localobservations with global model simulations [J]. Geophys. Res. Lett., 2008, 35(19): L19814.
[5] Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC [M]. ed. by Prrry M L. Cambridge: Cambridge University Press, 2007.
[6] van Leeuwen T T, van der Werf G R. Spatial and temporal variability in the ratio of trace gases emitted from biomass burning [J]. Atmos. Chem. Phys., 2011, 11(8): 3611-3629.
[7] Andreae M O, Merlet P. Emission of trace gases and aerosols from biomassburning [J]. Glob. Biogeochem. Cy., 2001, 15(4): 955-966.
[8] Akagi S K, Yokelson R J, Wiedinmyer C, et al. Emissionfactors for open and domestic biomass burning for use inatmospheric models [J]. Atmos. Chem. Phys. Discuss., 2010,10(11): 27523-27602.
[9] Giglio L, Randerson J T, van der Werf G R, et al. Assessing variability and long-term trends in burned area by mergingmultiple satellite fire products [J]. Biogeosciences, 2010, 7(3): 1171-1186.
[10] Stroppiana D, Pinnock S, Pereira J M C, et al. Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia [J]. Remote Sens. Environ., 2002, 82(1): 21-37.
[11] Giglio L, Descloitres J, Justice C O, Kaufman Y J. An enhanced contextualfire detection algorithm for MODIS [J]. Remote Sens. Environ., 2003, 87(2): 273–282.
[12] Roberts G, Wooster M J, Perry G L W, et al. Retrieval of biomass combustion rates and totals from fire radiative powerobservations: Application to southern Africa using geostationary SEVIRI imagery [J]. J. Geophys. Res.: Atmos., 2005, 110(D21): D21111.
[13] Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitativestudy of biomass burning: Derivation from the BIRD experimental satellite andcomparison to MODIS fire products [J]. Remote Sens. Environ., 2003, 86(1): 83-107.
[14] Seiler W, Crutzen P J. Estimates of gross and net fluxes of carbon betweenthe biosphere and the atmosphere from biomass burning [J]. Climate Change, 1980, 2(3): 207-247.
[15] Kaufman Y J, Remer L A, Ottmar R D, et al. Relationship between remotely sensed fire intensity and rate of emission of smoke: SCAR-C experiment [A]. InGlobal Biomass Burning [M]. ed. by Levin J S. Cambridge: The MIT Press, 1991: 685-696.
[16] Wooster M J, Roberts G, Perry G L W, et al. Combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release [J]. J. Geophys. Res., 2005, 110(D24): D24311.
[17] Freeborn P H, Wooster M J, Hao W M, et al. Relationships between energy release, fuel mass loss, and tracegas and aerosol emissions during laboratory biomass fires [J]. J. Geophys. Res. 2008, 113(D1): D01301.
[18] Matson M, Holben B. Satellite detection of tropical burning in Brazil [J]. Int. J. Remote Sens., 1987, 8(3): 509-516.
[19] Giglio L, Kendall J D, Justice C O. Evaluation of global fire detection algorithms using simulated AVHRR infrared data [J]. Int. J. Remote Sens., 1999, 20(10): 1947-1985.
[20] Li Z, Nadon S, Cihlar J. Satellite-based detection of Canadian boreal forest fire: Development and application of the algorithm [J]. Int. J. Remote Sens., 2000, 21(16): 3057-3069.
[21] Lasaponara R, Cuomo V, Machiatto M F, et al. A self-adaptive algorithm based on AVHRR multitemporal data analysisfor small active fire detection [J]. Int. J. Remote Sens., 2003, 24(8): 1723-1749.
[22] Csiszar I, Schroeder W, Giglio L, et al. Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results [J]. J. Geophys. Res. Atmos., 2014, 119(2): 803-816.
[23] Schroeder W, Oliva P, Giglio L.1995 The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment [J]. Remote Sens. Environ., 2014, 143: 85-96.
[24] Li Qing, Zhang Lijuan, Wu Chuanqing, et al. Satellite-remote-sensing-based monitoring of straw burning and analysis of its impact on air quality [J]. Journal of Ecology and Rural Enviroment, 2009, 25(1): 32-37(in Chinese).
厉青, 张丽娟, 吴传庆, 等. 基于卫星遥感的秸秆焚烧监测及对空气质量影响分析 [J]. 生态与农村环境学报, 2009, 25(1): 32-37.
[25] Key C H. Ecological and sampling constraints on defining land scape fire severity [J]. Fire Ecol., 2006, 2(2): 34-59.
[26] Roy D P, Jin Y, Lewis P E, et al. Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data [J]. Remote Sens. Environ., 2005, 97(2): 137-162.
[27] Pu R, Li Z, Gong P, et al. Development and analysis of a 12-year daily 1-km forest firedataset across North America from NOAA/AVHRR data [J]. Remote Sens. Environ., 2007, 108(2): 198-208.
[28] Tansey K, Grégoire J M. Defourny P, et al. A new, global, multi-annual (2000–2007)burnt area product at 1 km resolution [J]. Geophys. Res. Lett., 2008, 35(1): L01401.
[29] Roy D P, Lewis P E, Justice C O. Burned area mapping using multi-temporal moderate spatial resolution data—A bi-directional reflectance model-based expectation approach [J]. Remote Sens. Environ., 2002, 83(1/2): 263-286.
[30] Epting J, Verbyla D, Sorbel B. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TMand ETM+ [J]. Remote Sens. Environ., 2005, 96(3): 328-339.
[31] Giglio L, van der Werf G R, Randerson J T, et al. Global estimation of burned area using MODIS activefire observations [J]. Atmos. Chem. Phys., 2006, 6(4): 957-974.
[32] Zhang X, Kondragunta, S. Temporal and spatial variability in biomass burned across the USA derived from the GOES fire product [J]. Remote Sens. Environ., 2008, 112(6): 2886-2897.
[33] Schroeder W, Prins E, Giglio L, et al. Validation of GOES and MODIS activefire detection products using ASTER and ETM+ data [J]. Remote Sens. Environ., 2008, 112(6): 2711-2726.
[34] Morisette J, Giglio L, Csiszar I, et al. Validation of the MODIS active fire product over Southern Africa with ASTER data [J]. Int. J. Remote Sens., 2005, 26(19): 4239-4264.
[35] Morisette J T, Giglio L, Csiszar I, et al. Validation of MODIS active fire detection products derived from two algorithms [J]. Earth Interactions, 2005, 9: 141-161.
[36] Csiszar I, Morisette J T, Giglio L. Validation of active fire detectionfrom moderate-resolution satellite sensors: The MODIS examplein Northern Eurasia [J]. IEEE Trans. Geosci. Remote Sens., 2006, 44(7): 1757-1764.
[37] Zhang X Y, Kondragunta S, Quayle B. Estimation of biomass burned areas using multiple-satellite-observed active fires [J]. IEEE Trans. Geosci. Remote Sens., 2011, 49(11): 4469-4482.
[38] Chuvieco E, Yue C, Heil A, et al. A new global burned area product for climate assessment of fire impacts [J]. Global Ecol. Biogeogr., 2016, 25(5): 619-629.
[39] Mouillot F, Schultz M G, Yue C, et al. Ten years of global burned area products from spaceborne remote sensing-a review : Analysis of user needs and recommendations for future developments [J]. Int. J. Appl. Earth Obs., 2014, 26: 64-79. [40] Kaufman Y J, Kleidman R G, King M D. SCAR-B fires inthe tropics: properties and remote sensing from EOS-MODIS [J]. J. Geophys. Res., 1998, 103(D24): 31955-31968.
[41] Ichoku C, Giglio L, Wooster M J, et al. Global characterizationof biomass-burning patterns using satellite measurements of fire radiative energy [J]. Remote. Sens. Environ., 2008, 112(6): 2950-2962.
[42] Dozier J. A method for satellite identification of surface temperature fields of subpixel resolution [J]. Remote Sens. Environ., 1981, 11: 221-229.
[43] Wooster M J, Zhukov B, Oertel D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products [J]. Remote Sens. Environ., 2003, 86(1): 83-107.
[44] Zhukov B, Lorenz E, Oertel D, et al. Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission 2001-2004 [J]. Remote Sens. Environ., 2006, 100(1): 29-51.
[45] Justice C O, Giglio L, Korontzi S, et al. The MODIS fire products [J]. Remote Sens. Environ., 2002, 83(1): 244-262.
[46] Roberts G J, Wooster M J. Fire detection and fire characterization over Africa using Meteosat SEVIRI [J]. IEEE Trans. Geosci.Remote Sens., 2008, 46(4): 1200-1218.
[47] Andela N, Kaiser J, van der Werf G, et al. New fire diurnal cycle characterizations to improve fire radiativeenergy assessments made from MODIS observations [J]. Atmos. Chem. Phys., 2015, 15(15): 8831-8846.
[48] Kaiser J W, Heil A, Andreae M O, et al. Biomass burning emissionsestimated with a global fire assimilation system basedon observed fire radiative power [J]. Biogeosciences, 2012, 9(1): 527-554.
[49] Freeborn P H, Wooster M J, Roberts G, et al. Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data [J]. Remote Sens. Environ., 2009,113(8): 1700-1711.
[50] Giglio L, Randerson J T, van der Werf G R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4) [J]. J. Geophys. Res. Biogeosci., 2013, 118(1): 317-328.
[51] Wiedinmyer C, Akagi S K, Yokelson R J, et al. The Fire Inventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning [J]. Geosci. Model Dev., 2011, 4: 625-641.
[52] Hoelzemann J J, Schultz M G, Brasseur G P, et al. Global Wildland Fire Emission Model (GWEM): Evaluating the use of global area burnt satellite data [J]. J. Geophys. Res., 2014, 109(D14): D14S04.
[53] Jain A K, Tao Z, Yang X, et al. Estimates of global biomass burning emissions for reactive greenhouse gases (CO, NMHCs, and NOx) and CO2 [J]. J. Geophys. Res., 2006, 111(D6): D06304.
[54] Zhang X, Kondragunta S, Ram J, et al. Near-real-time global biomass burning emissions product from geostationary satellite constellation [J]. J. Geophys. Res., 2012, 117(D14): D14201.
[55] Yokelson R J, Burling I R, Urbanski S P, et al. Trace gas and particle emissions from openbiomass burning in Mexico [J]. Atmos. Chem. Phys., 2011, 11(14): 6787-6808.
[56] Ichoku C, Ellison L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements [J]. Atmos. Chem. Phys., 2014, 14(13): 6643-6667.
[57] Reid J S, Hyer E J, Prins E M, et al. Global monitoring and forecastingof biomass-burning smoke: description and lessons from the Fire Locatingand Modeling of Burning Emissions (FLAMBE) program [J]. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2009, 2(3): 144-162.
[58] Freeborn P H, Wooster M J, Roy D P, et al. Quantification of MODIS fire radiativepower (FRP) measurement uncertaintyfor use in satellite-based active firecharacterization and biomass burning estimation [J]. Geophys. Res. Lett., 2014, 41(6): 1988-1994.
[59] Cao Guoliang, Zhang Xiaoye, Wang Dan, et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent [J]. China Environmental Science. 2005, 25(4): 389-393(in Chinese).
曹国良, 张小曳, 王丹, 等. 中国大陆生物质燃烧排放的污染物清单 [J]. 中国环境科学, 2005, (4): 389-393.
[60] Cao Guoliang, Zhang Xiaoye, Wang Dan, et al. Inventory of emissions of pollutants from open burning crop residue [J]. Journal of Agro-Environment Science, 2005, 24(4): 800-804(in Chinese).
曹国良, 张小曳, 王丹, 等. 秸秆露天焚烧排放的TSP等污染物清单 [J]. 农业环境科学学报, 2005, 24(4): 800-804.
[61] Lu Bing, Kong Shaofei, Han Bin, et al. Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007 [J]. China Environmental Science, 2011, 31(2):186-194(in Chinese).
陆炳, 孔少飞, 韩斌, 等. 2007年中国大陆地区生物质燃烧排放污染物清单 [J]. 中国环境科学, 2011, 31(2):186-194.
[62] Wang Shuxiao, Zhang Chuying. Spatial and temporal distribution of air pollutant emissions from open burning of crop residues in China [J]. Science Paper Online, 2008, 5: 329-333(in Chinese).
王书肖, 张楚莹. 中国秸秆露天焚烧大气污染物排放时空分布 [J]. 中国科技论文在线, 2008, 5: 329-333.
[63] Zhao Jianning, Zhang Guilong, Yang Dianlin. Estimation of carbon emission from burning of grain crop residues in China [J]. Journal of Agro-Environment Science, 2011, 30(4): 812-816(in Chinese).
赵建宁, 张贵龙, 杨殿林. 中国粮食作物秸秆焚烧释放碳量的估算 [J]. 农业环境科学学报, 2011, 30(4): 812-816.
[64] Li Feiyue, Wang Jianfei. Estimation of carbon emission from burning and carbon sequestration from biochar producing using crop straw in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(14): 1-7(in Chinese). 李飞跃,汪建飞. 中国粮食作物秸秆焚烧排碳量及转化生物炭固碳量的估算 [J]. 农业工程学报,2013,29(14): 1-7.
[65] Liu M, Song Y, Yao H, et al. Estimating emissions from agricultural fires in the North China Plain based on MODIS fire radiative power [J]. Atmos. Environ., 2015, 112: 326-334.
[66] Li J, Li Y, Bo Y, et al. High-resolution historical emission inventories of crop residue burning in fields in China for the period 1990–2013 [J]. Atmos. Environ., 2016, 138: 152-161. |